Undergraduate Course

Integrated Master in Science: Biochemistry and Biotechnology

Integrated Master in Science: Biochemistry and Biotechnology

Overview

The details
Biochemistry and Biotechnology
CZ99
October 2025
Full-time
4 years
Colchester Campus

With over 100 years of staggering advances in the field, the time to study biochemistry and biotechnology is now. At Essex, you'll have the opportunity to explore how the processes of life function at molecular level and learn how biotechnology is addressing real-world problems and challenges.

The subjects of biochemistry and biotechnology are continually expanding, and our curriculum constantly evolves to reflect the latest findings and their applications. You'll learn in a friendly and supportive atmosphere and benefit from a research-led education, taught by world-leading experts at the forefront of their fields.

At Essex, we specialise in structure-function relationships of biomolecules and use computational approaches and bioinformatics to complement our research. You'll find that our course has a very high proportion of practical work that provides valuable experience for your career and our research-led teaching addresses the latest challenges and breakthroughs. Topics include:

  • Molecular enzymology
  • Neurodegeneration
  • Structural biology
  • Bioenergetics
  • Metabolism

You'll also learn about and appraise the approaches that can be used to address the challenges facing our planet, including:

  • The development of biofuels, pharmaceuticals and crops to support and feed the growing human population
  • Industrial, plant and medical biotechnology
  • Gene and protein technology
  • Synthetic biology
  • Bioinformatics

With our Integrated Masters you'll be able to fast track your degree and complete your final year in nine months compared to a regular MSc which usually takes twelve months. The course will cover key skills in biochemistry and biotechnology and provide you with the knowledge, understanding and hands-on experience required in this rapidly growing area of technology.

When you combine your undergraduate and postgraduate study in one degree you'll be equipped with a strong theoretical background, specialist expertise through independent research and practical insights into current commercial applications. This combination makes graduates from our course attractive candidates for many employers.

Visit our biochemistry subject page for more information and content.

Why we're great.
  • Network with the technology and pharmaceutical industries, as well as other employers.
  • Work with internationally recognised researchers who are at the cutting-edge of their fields.
  • We are ranked 2nd in the UK for biosciences (The Mail University Guide 2025) and 7th for biology (non-specific) for overall positivity score (National Student Survey 2024, English broad-discipline higher education institutions).

Study abroad

Your education extends beyond the university campus. We support you in expanding your education through offering the opportunity to spend a year or a term studying abroad at one of our partner universities. The five-year version of our Integrated Masters allows you to spend the third year abroad or employed on a placement abroad, while otherwise remaining identical to the four-year Integrated Masters.

Studying abroad allows you to experience other cultures and languages, to broaden your degree socially and academically, and to demonstrate to employers that you are mature, adaptable, and organised.

If you spend a full year abroad you'll only pay 15% of your usual tuition fee to Essex for that year. You won't pay any tuition fees to your host university

Placement year

You can spend your third year on a placement year with another external organisation. This is usually focused around your course, and enables you to learn about a particular sector, company or job role, apply your academic knowledge in a practical working environment, and receive inspiration for future career pathways. Organisations our students have recently been placed with include GlaxoSmithKline, Proctor & Gamble, Aquaterra, Astrazeneca, Genzyme, Reckitt Benckiser, Thermo Fisher and Isogenica.

If you complete a placement year you'll only pay 20% of your usual tuition fee to Essex for that year.

Our first-year students will have the opportunity to participate in the Science Week at Public Health England (PHE) in Colindale. We have fantastic collaboration with several hospitals in the Eastern Region and beyond, and part of this collaboration is to send all of our second-year students to visit hospitals to have a clear picture about the biomedical science profession. Our final-year undergraduate students have the opportunity to participate in our Employability Day at Essex, and also contribute to the IBMS Congress.

Our expert staff

As one of the largest schools at our University, we offer a lively, friendly and supportive environment with research-led study and high quality teaching, where you will learn from and work alongside our expert staff.

Our research covers a wide spectrum of biology – from the cell right through to communities and ecosystems. Key academic staff for this course include Dr Jonathan Worrall, who is researching new biotechnological applications of the antibiotic-producing actinobacterium Streptomycetes. The course director for BSc Biochemistry is Dr Brandon Reeder, who focuses on biochemical and biomedical based-research, particularly in the role of proteins in health and disease.

The University of Essex has a Women's Network to support female staff and students, and our School was awarded the Athena Swan Silver Award in October 2020, which reflects the work carried out by staff in our School to continue to improve equality, including a mentorship scheme, support for postdoctoral research staff, and financial help towards childcare costs for academics who wish to attend conferences.

Specialist facilities

Recent spending by our University has allowed for major refurbishment and expansion of our School of Life Sciences, including:

  • Work in an open and friendly department, with shared staff-student social spaces
  • State-of-the-art research facilities, from protein crystallisation robots, protein over-production facilities, to CO2 incubators, to cell imaging microscopes
  • Teaching facilities including new undergraduate laboratories
  • Learn to use state-of-the-art equipment

Your future

Our graduates are well placed to find employment in the ever-growing bio-based economy, and postgraduate study is often a requirement for becoming a researcher, scientist, academic journal editor and to work in some public bodies or private companies.

Recent graduates have gone on to work for the following high-profile organisations including Bupa and SAL Cambridge (microbiology samples). We also work with our University's Student Development Team to help you find out about further work experience, internships, placements, and voluntary opportunities.

Visit our careers pages to find out more about careers in life sciences.

Entry requirements

UK entry requirements

  • GCSE: Mathematics C/4.
  • A-levels: ABB - BBB or 128 - 120 UCAS tariff points from a minimum of 2 full A-levels, including B in Chemistry or Biology and a second science or Mathematics. Psychology, Statistics, Physics, Applied Science, Human Biology, Geography, PE and Sociology (on a case by case basis) are all acceptable as second science A-levels.
  • BTEC: DDM or 120 UCAS tariff points from a minimum of the equivalent of 2 full A-levels. The acceptability of BTECs is dependent on subject studied and optional units taken - email ugquery@essex.ac.uk for advice.
  • Combined qualifications on the UCAS tariff: 128 - 120 UCAS tariff points from a minimum of 2 full A levels or equivalent including B in Chemistry or Biology and a second science or Mathematics. Tariff point offers may be made if you are taking a qualification, or mixture of qualifications, from the list on our undergraduate application information page.
  • IB: 32 - 30 points or three Higher Level certificates with 655-555. Either must include Higher Level Chemistry or Biology and a second science or Mathematics grade 5. Computer Science, Design Technology, Physics, Sport, exercise and Health Science at Higher Level are all acceptable as second science subjects. Our GCSE Maths requirement can be met with either: 4 in Standard level Maths; 3 in Higher level Maths; or 4 in IB Middle Years Maths.
  • IB Career-related Programme: We consider combinations of IB Diploma Programme courses with BTECs or other qualifications. Advice on acceptability can be provided, email Undergraduate Admissions.
  • QAA-approved Access to HE Diploma: 15 level 3 credits at Distinction and 30 level 3 credits at Merit, depending on subject studied - advice on acceptability can be provided, email Undergraduate Admissions.
  • T-levels: For our Life Sciences courses we can consider T-levels taken in Science on a case-by-case basis. The offer for most courses is Distinction overall. Depending on the course applied for there may be additional requirements, which may include a specific grade in the Core. We cannot accept the T-levels in Health or Healthcare Science.

Contextual Offers:

We are committed to ensuring that all students with the merit and potential to benefit from an Essex education are supported to do so. If you are a home fee paying student residing in the UK you may be eligible for a Contextual Offer of up to two A-level grades, or equivalent, below our standard conditional offer.
Factors we consider:

  • Applicants from underrepresented groups
  • Applicants progressing from University of Essex Schools Membership schools/colleges
  • Applicants who attend a compulsory admissions interview
  • Applicants who attend an Offer Holder Day at our Colchester or Southend campus

Our contextual offers policy outlines additional circumstances and eligibility criteria.

For further information about what a contextual offer may look like for your specific qualification profile, email ugquery@essex.ac.uk.

If you haven't got the grades you hoped for, have a non-traditional academic background, are a mature student, or have any questions about eligibility for your course, more information can be found on our undergraduate application information page or get in touch with our Undergraduate Admissions Team.

International & EU entry requirements

We accept a wide range of qualifications from applicants studying in the EU and other countries. Get in touch with any questions you may have about the qualifications we accept. Remember to tell us about the qualifications you have already completed or are currently taking.

Sorry, the entry requirements for the country that you have selected are not available here. Please contact our Undergraduate Admissions team at ugquery@essex.ac.uk to request the entry requirements for this country.

English language requirements

English language requirements for applicants whose first language is not English: IELTS 6.0 overall, or specified score in another equivalent test that we accept.

Details of English language requirements, including component scores, and the tests we accept for applicants who require a Student visa (excluding Nationals of Majority English Speaking Countries) can be found here

If we accept the English component of an international qualification it will be included in the academic levels listed above for the relevant countries.

English language shelf-life

Most English language qualifications have a validity period of 5 years. The validity period of Pearson Test of English, TOEFL and CBSE or CISCE English is 2 years.

If you require a Student visa to study in the UK please see our immigration webpages for the latest Home Office guidance on English language qualifications.

Pre-sessional English courses

If you do not meet our IELTS requirements then you may be able to complete a pre-sessional English pathway that enables you to start your course without retaking IELTS.

Pending English language qualifications

You don’t need to achieve the required level before making your application, but it will be one of the conditions of your offer.

If you cannot find the qualification that you have achieved or are pending, then please email ugquery@essex.ac.uk .

Requirements for second and final year entry

Different requirements apply for second and final year entry, and specified component grades are also required for applicants who require a visa to study in the UK. Details of English language requirements, including UK Visas and Immigration minimum component scores, and the tests we accept for applicants who require a Student visa (excluding Nationals of Majority English Speaking Countries) can be found here

Additional Notes

If you’re an international student, but do not meet the English language or academic requirements for direct admission to this degree, you could prepare and gain entry through a pathway course. Find out more about opportunities available to you at the University of Essex International College

Structure

Course structure

We offer a flexible course structure with a mixture of compulsory and optional modules chosen from lists. The first three undergraduate years listed below are an example structure from the current academic year. Your course structure could differ from this if modules change from year-to-year. The final Masters year shows you all of the modules currently available (compulsory and optional) so you can see the breadth of what is on offer.

Our research-led teaching is continually evolving to address the latest challenges and breakthroughs in the field. The course content is therefore reviewed on an annual basis to ensure our courses remain up-to-date so modules listed are subject to change.

We understand that deciding where and what to study is a very important decision for you. We'll make all reasonable efforts to provide you with the courses, services and facilities as described on our website and in line with your contract with us. However, if we need to make material changes, for example due to significant disruption, we'll let our applicants and students know as soon as possible.

Components and modules explained

Components

Components are the blocks of study that make up your course. A component may have a set module which you must study, or a number of modules from which you can choose.

Each component has a status and carries a certain number of credits towards your qualification.

Status What this means
Core
You must take the set module for this component and you must pass. No failure can be permitted.
Core with Options
You can choose which module to study from the available options for this component but you must pass. No failure can be permitted.
Compulsory
You must take the set module for this component. There may be limited opportunities to continue on the course/be eligible for the qualification if you fail.
Compulsory with Options
You can choose which module to study from the available options for this component. There may be limited opportunities to continue on the course/be eligible for the qualification if you fail.
Optional
You can choose which module to study from the available options for this component. There may be limited opportunities to continue on the course/be eligible for the qualification if you fail.

The modules that are available for you to choose for each component will depend on several factors, including which modules you have chosen for other components, which modules you have completed in previous years of your course, and which term the module is taught in.

Modules

Modules are the individual units of study for your course. Each module has its own set of learning outcomes and assessment criteria and also carries a certain number of credits.

In most cases you will study one module per component, but in some cases you may need to study more than one module. For example, a 30-credit component may comprise of either one 30-credit module, or two 15-credit modules, depending on the options available.

Modules may be taught at different times of the year and by a different department or school to the one your course is primarily based in. You can find this information from the module code. For example, the module code HR100-4-FY means:

HR 100  4  FY

The department or school the module will be taught by.

In this example, the module would be taught by the Department of History.

The module number. 

The UK academic level of the module.

A standard undergraduate course will comprise of level 4, 5 and 6 modules - increasing as you progress through the course.

A standard postgraduate taught course will comprise of level 7 modules.

A postgraduate research degree is a level 8 qualification.

The term the module will be taught in.

  • AU: Autumn term
  • SP: Spring term
  • SU: Summer term
  • FY: Full year 
  • AP: Autumn and Spring terms
  • PS: Spring and Summer terms
  • AS: Autumn and Summer terms

COMPONENT 01: CORE

Molecular Cell Biology
(15 CREDITS)

The building blocks of life, plants and animals depend on the actions of individual cells. Investigate the biochemical characteristics of the small molecules and large macromolecules that allow cells to function. You examine the origins of life, cell structure and function, energy transductions, synthesis of molecules, and the eukaryotic cell cycle.

View Molecular Cell Biology on our Module Directory

COMPONENT 02: CORE

Genetics and Evolution
(15 CREDITS)

Why do we all look different? Are some illnesses hereditary? Are animals born ready-suited to their environment? From the early theories of Mendel to modern studies in molecular genetics, you explore how scientists have answered these questions over the last 150 years. Examine how the structure and function of DNA allows genetic material to be expressed, replicated and inherited, and consider how genetic variation leads to adaptive evolution. From developing new technologies in gene cloning to the applications for modern medicine, you explore how geneticists are building on the earlier achievements in this fundamentally important field to enhance our understanding of life on earth.

View Genetics and Evolution on our Module Directory

COMPONENT 03: CORE

Microbiology
(15 CREDITS)

Microbes are essential for life, and they connect the health of humans, other animals and ecosystems. They help us digest our food, provide us with vitamins and are contribute to our health and wellbeing. Marine microbes provide about one-third of the oxygen we breath. And, by cleaning up pollutants and synthesising valuable products such as antibiotics, microbes are essential for the delivery of the United Nation’s Sustainable Development Goals. On the other hand, some microbes cause devastating diseases. Despite major advances in treatment and prevention, incidences of infectious disease continue to rise. You will learn about the vast diversity and evolution of these mostly beneficial microbes and learn about the pathogenicity of the harmful ones. You will examine how different viruses and bacteria invade, interact and replicate within their hosts. A series of four practical sessions in our new teaching laboratory will give you hands-on experience of growing, observing, purifying, counting and even killing microbes. This will provide you with sought-after skills, such as aseptic technique, serial dilution and data analysis.

View Microbiology on our Module Directory

COMPONENT 04: CORE

General and Organic Chemistry
(15 CREDITS)

Many recent advances in biological research have been born from an increased understanding of the molecules involved in systems and processes. But what do things look like beyond molecular level?<br><br>Study how molecules are formed from individual atoms, and how the properties of these constituent atoms influence molecular structure and reactivity. Examine the fundamental concepts of chemical bonding, electronegativity, acidity, basicity, hydrogen bonding and review the common organic functional groups and different types of isomerism.

View General and Organic Chemistry on our Module Directory

COMPONENT 05: CORE

Biochemistry of Macromolecules
(15 CREDITS)

Explore the building blocks of life. From the proteins that make up our genetic code to the lipids that envelope our cells, explore the structure, function and biological role of the major macromolecules. You investigate the basic principles of protein structural bioinformatics and protein structural evolution, examine how ligand-binding equilibria may form the basis of diverse biological phenomena, learn the structure and properties of monosaccharides and polysaccharides and review the major types of lipids. This module develops key skills in analysis and interpretation of data, biochemical methodology and calculation of biochemical parameters.

View Biochemistry of Macromolecules on our Module Directory

COMPONENT 06: CORE

Inorganic and Physical Chemistry
(15 CREDITS)

To fully understand the function of biological systems, we must examine their underlying biochemical principles. You explore the importance of molecules which contain the p-block elements of oxygen, nitrogen, sulphur and phosphorus, concentrating on how their electron structure relates to the action of redox enzymes in metabolism. You also look at the biological role of main-group and transition metal cations.<br><br>You will also review the physical elements of biochemical reactions, including kinetics and thermodynamics. You determine reaction rates, reaction orders and activation energies as well as assessing how thermodynamic parameters affect reactions.

View Inorganic and Physical Chemistry on our Module Directory

COMPONENT 07: CORE

Quantitative methods for Life Sciences
(15 CREDITS)

Develop your skillset and boost your CV. This module prepares you for the coursework, laboratory practicals and research projects that you will encounter during undergraduate study. Get to know referencing systems and learn how to effectively communicate scientific information. Use scientific units and simple algebra and demonstrate understanding of logarithms, exponentials, geometry and elementary calculus. Learn how to design experiments, handle data and display, interpret and analyse basic statistics. Teaching and learning will be through a mixture of lectures, classes, practicals and tutorials, with an emphasis on developing the key transferable skills needed for a career in biosciences.

View Quantitative methods for Life Sciences on our Module Directory

COMPONENT 08: COMPULSORY

Transferable Skills in Life Sciences
(15 CREDITS)

You will develop your transferable skills in scientific writing (including referencing and avoiding plagiarism), teamwork and communication through oral presentations, study and research skills (including essay writing, lecture note taking, use of library and databases). Teaching and learning will be through a mixture of lectures, classes, and tutorials. The emphasis will be on small group, tutorial-style teaching and interaction with other students on this module, with assessments tailored to your degree subject area.

View Transferable Skills in Life Sciences on our Module Directory

COMPONENT 01: COMPULSORY

Employability Skills for the Biosciences
(15 CREDITS)

Develop your practical and critical thinking skills during this week-long summer module. Basic knowledge gained from molecular biology is now being applied to solve industrial scale biological problems. You will rationally design bacteria by engineering DNA and transforming your microbe in the lab before presenting your results to peers.

View Employability Skills for the Biosciences on our Module Directory

COMPONENT 02: COMPULSORY

Molecular Biology: Genes, Proteins and Disease
(15 CREDITS)

Molecular biology is central to our knowledge of how biology "works" at a molecular level. This module explores the breadth of processes involved in the regulation of gene expression and the proteins that are made. You also discover the ever-expanding range of molecular biology techniques, including PCR, cloning and mutagenesis, and how these are applied to investigate and treat disease.

View Molecular Biology: Genes, Proteins and Disease on our Module Directory

COMPONENT 03: COMPULSORY

Genome Science
(15 CREDITS)

We are in the age of genomics and scientists have devised new technologies that can generate whole genome sequences in days which would once have taken years to achieve. Learn the high-throughput techniques of next-generation sequencing used to study genomes, the proteome and the interactome. Investigate how nucleotide sequences are analysed, applying the analytical tools used by research scientists and understand how new genes are discovered and their functions revealed. You also discover how our knowledge of gene structure is being applied in the emerging field of synthetic biology to create new organisms and modify existing ones by gene editing.

View Genome Science on our Module Directory

COMPONENT 04: COMPULSORY

Cell Biology
(15 CREDITS)

The study of cells is at the centre of modern biology.  Learn how cellular components determine cell structure and function, how cells communicate and how signaling pathways regulate cell fate.  You also explore the regulation of the cell cycle and cell death and learn about changes that occur in cells that have become cancerous. A solid understanding of cell biology opens doors to more specialist topics, such as plant biotechnology and cancer biology.

View Cell Biology on our Module Directory

COMPONENT 05: COMPULSORY

Metals in Biotechnology
(15 CREDITS)

Assess the importance of zinc, copper and iron in biological systems and review how they are kept in stable equilibrium. Explore the structure and functions of proteins and enzymes that contain metal cofactors and discuss the diseases and possible treatments associated with both metal deficiency and overload.

View Metals in Biotechnology on our Module Directory

COMPONENT 06: COMPULSORY

Proteins and Macromolecular Assemblies
(15 CREDITS)

Understanding the shape, structure and folding of proteins can provide the basis for drug targeting in disease processes and enable us to develop a better understanding of specific biological pathways. This module takes a look at particular macromolecular assemblies using the most up-to-date structural biological techniques with a particular emphasis on x-ray crystallography.

View Proteins and Macromolecular Assemblies on our Module Directory

COMPONENT 07: COMPULSORY

Protein Bioinformatics
(15 CREDITS)

Bioinformatics have become an indispensable skill for the next generation of biochemists and biologists in order to retrieve, analyse and interpret data. You will learn how to access, search and extract data from publicly available protein databases, and analyse and display results using appropriate software.

View Protein Bioinformatics on our Module Directory

COMPONENT 08: OPTIONAL

BS231-5-AU or BS234-5-AU or BS253-5-AU
(15 CREDITS)

COMPONENT 01: COMPULSORY

Research Project in Life Sciences
(45 CREDITS)

This module aims to prepare you for carrying out an individual scientific investigation on a topic relating to your degree. Develop skills to identify a suitable question and then design an experimental approach to obtain data addressing this question. The assessment focuses on your analysis and presentation of these data in a suitable scientific paper format report, on the research, understanding and critical writing about the scientific literature relating to your project. Your oral project presentation skills and response to questions, the planning and management of your project work, your progress reflection and your employability skills will also be evaluated. This module has been designed to enable students to integrate their subject knowledge with an understanding of sustainable development, acquiring the skills and competencies essential for addressing the urgent sustainability challenges of the 21st century.

View Research Project in Life Sciences on our Module Directory

COMPONENT 02: COMPULSORY

Structural and Molecular Enzymology
(15 CREDITS)

Building upon knowledge gained in previous years, you discuss the mathematical and structural models used to gauge enzyme activity, the mechanisms of allostery and the experimental basis on which the various models of allostery may be distinguished. You also explore the mechanism of action of the dehydrogenases and the steady state mechanisms of multi-site enzymes.

View Structural and Molecular Enzymology on our Module Directory

COMPONENT 03: COMPULSORY

Biomembranes and Bioenergetics
(15 CREDITS)

Biomembranes are of fundamental importance in determining the organisation and functioning of living cells. Biophysical and biochemical methods to study membranes will be discussed alongside the specific roles of membranes in the signal transduction, ion and solute transport and energy storage in cells. Energy generation and transformation by membranes is an essential feature of all cells: membrane electron transport processes will be discussed (with particular attention being given to respiratory and photosynthetic processes), together with the chemiosmotic theory for ATP synthesis by membranes. A bottom up approach building from basic thermodynamics to observed macroscopic effects and biological function is taken. Particular emphasis is placed on the quantitative description of chemical free energy changes and electron transfer reactions allowing students to analyse and interpret biophysical data in the context of actual experiments.

View Biomembranes and Bioenergetics on our Module Directory

COMPONENT 04: OPTIONAL

Option(s) from list
(45 CREDITS)

COMPONENT 01: COMPULSORY

BS937-7-SP
(15 CREDITS)

COMPONENT 02: COMPULSORY

Gene Technology and Synthetic Biology
(30 CREDITS)

The development of techniques to manipulate and analyse nucleic acids has revolutionised the study of biology, and provided the key driver for massive expansion in biotechnology. You explore the major tools used in gene technology and gain a practical understanding of how they are used, as well as the molecular techniques that can be used to explore biological questions. Gain an understanding of the impact of gene technology and synthetic biology and explore the applications of genome scale methods for studying gene expression in biotechnology and molecular medicine.

View Gene Technology and Synthetic Biology on our Module Directory

COMPONENT 03: COMPULSORY

Protein Technologies and Proteomics
(15 CREDITS)

Explore the features and properties of proteins, and examine how they are related to function, as well as their wider role within important biological processes. Getting hands-on, you produce, isolate, purify and characterise proteins with biotechnological potential, as well gaining valuable experience in obtaining and analysing proteomic data.

View Protein Technologies and Proteomics on our Module Directory

COMPONENT 04: COMPULSORY

Independent Research (MSci)
(30 CREDITS)

The aim of this module is for you to carry out an independent scientific investigation on a topic relating to your degree specialisation. You should find this to be both stimulating and of particular importance for your future career, because it will provide you with the opportunity to analyse a system in some depth and to further develop your skills in the analysis and interpretation of data.

View Independent Research (MSci) on our Module Directory

COMPONENT 05: COMPULSORY

Genomics
(15 CREDITS)

The sequencing of the human genome is one of the biggest achievements of this century. Nowadays, genomics is leading to major advances in biotechnology and molecular medicine, such as enhanced diagnostic tools, better vaccines, improved treatments for disease, and better detection of pollutants. In this module, you gain an understanding of current genomics approaches, including genome sequencing and comparative genomics. You also learn how to study your own genomic data, using state-of-the-art computational resources.

View Genomics on our Module Directory

COMPONENT 06: COMPULSORY

Professional Skills and the Business of Biosciences
(15 CREDITS)

Gain invaluable insight into the functioning of the Biotechnology and Pharmaceutical industries, investigate some of the most timely and contentious topics in Biotechnology, and develop transferable professional and research skills to enhance your chances of securing employment in the field.

View Professional Skills and the Business of Biosciences on our Module Directory

Placement

On a placement year you gain relevant work experience within an external business or organisation, giving you a competitive edge in the graduate job market and providing you with key contacts within the industry. The rest of your course remains identical to the four-year Integrated Masters.

Year abroad

On your year abroad, you have the opportunity to experience other cultures and languages, to broaden your degree socially and academically, and to demonstrate to employers that you are mature, adaptable, and organised. The rest of your course remains identical to the four-year Integrated Masters.

Teaching

  • Courses are taught by a combination of lectures, laboratory work, assignments, and individual and group project activities
  • Gain experience collating and interpreting data, and reporting findings clearly and concisely
  • Undergraduate students in the School of Life Sciences typically attend two or three hours of lectures per week per module, plus two or three laboratory practices per module

Assessment

  • Our modules are assessed by a combination of exams, essays, presentations and written reviews
  • Contribute towards real-world research projects

Fees and funding

Home/UK fee

£9,250 per year

International fee

£23,200 per year

Fees will increase for each academic year of study.

What's next

Open Days

Our events are a great way to find out more about studying at Essex. We run a number of Open Days throughout the year which enable you to discover what our campus has to offer. You have the chance to:

  • tour our campus and accommodation
  • find out answers to your questions about our courses, student finance, graduate employability, student support and more
  • meet our students and staff

Check out our Visit Us pages to find out more information about booking onto one of our events. And if the dates aren’t suitable for you, feel free to book a campus tour here.

2024 Open Days (Colchester Campus)

  • Saturday 16 November 2024 - Mini Open Day

Applying

Applications for our full-time undergraduate courses should be made through the Universities and Colleges Admissions Service (UCAS). Full details on how to apply can be found on the filling in your UCAS undergraduate application web page.

Our UK students, and some of our EU and international students, who are still at school or college, can apply through their school. Your school will be able to check and then submit your completed application to UCAS. Our other international applicants (EU or worldwide) or independent applicants in the UK can also apply online through UCAS Apply.

The UCAS code for our University of Essex is ESSEX E70. The individual campus codes for our Loughton and Southend Campuses are 'L' and 'S' respectively.

You can find further information on how to apply, including information on transferring from another university, applying if you are not currently at a school or college, and applying for readmission on our How to apply and entry requirements page.

Offer Holder Days

If you receive an undergraduate offer to study with us in October 2024 and live in the UK, you will receive an email invitation to book onto one of our Offer Holder Days. Our Colchester Campus Offer Holder Days run from February to May 2024 on various Wednesdays and Saturdays, and our Southend Campus events run in April and May. These events provide the opportunity to meet your department, tour our campus and accommodation, and chat to current students. To support your attendance, we are offering a travel bursary, allowing you to claim up to £150 as reimbursement for travel expenses. For further information about Offer Holder Days, including terms and conditions and eligibility criteria for our travel bursary, please visit our webpage.

If you are an overseas offer-holder, you will be invited to attend one of our virtual events. However, you are more than welcome to join us at one of our in-person Offer Holder Days if you are able to - we will let you know in your invite email how you can do this.

A sunny day with banners flying on Colchester Campus Square 4.

Visit Colchester Campus

Set within 200 acres of award-winning parkland - Wivenhoe Park and located two miles from the historic city centre of Colchester – England's oldest recorded development. Our Colchester Campus is also easily reached from London and Stansted Airport in under one hour.


View from Square 2 outside the Rab Butler Building looking towards Square 3

Virtual tours

If you live too far away to come to Essex (or have a busy lifestyle), no problem. Our 360 degree virtual tours allows you to explore our University from the comfort of your home. Check out our Colchester virtual tour and Southend virtual tour to see accommodation options, facilities and social spaces.

At Essex we pride ourselves on being a welcoming and inclusive student community. We offer a wide range of support to individuals and groups of student members who may have specific requirements, interests or responsibilities.

Find out more

The University makes every effort to ensure that this information on its programme specification is accurate and up-to-date. Exceptionally it can be necessary to make changes, for example to courses, facilities or fees. Examples of such reasons might include, but are not limited to: strikes, other industrial action, staff illness, severe weather, fire, civil commotion, riot, invasion, terrorist attack or threat of terrorist attack (whether declared or not), natural disaster, restrictions imposed by government or public authorities, epidemic or pandemic disease, failure of public utilities or transport systems or the withdrawal/reduction of funding. Changes to courses may for example consist of variations to the content and method of delivery of programmes, courses and other services, to discontinue programmes, courses and other services and to merge or combine programmes or courses. The University will endeavour to keep such changes to a minimum, and will also keep students informed appropriately by updating our programme specifications. The University would inform and engage with you if your course was to be discontinued, and would provide you with options, where appropriate, in line with our Compensation and Refund Policy.

The full Procedures, Rules and Regulations of the University governing how it operates are set out in the Charter, Statutes and Ordinances and in the University Regulations, Policy and Procedures.

Ask us a question
Ask us a question

Want to quiz us about your course? Got a question that just needs answering? Get in touch with us on live chat!