The Essex website uses cookies. By continuing to browse the site you are consenting to their use. Please visit our cookie policy to find out which cookies we use and why.
View cookie policy.
Our BSc Mathematics (including Foundation Year) could be suitable for you if your academic qualifications do not yet meet our entry requirements for a three-year version of our computer science, electronic engineering and mathematics courses and you want a programme that improves your skills to support your academic performance.
During Year Zero you will study on our Computer Science, Electronic Engineering and Mathematics Pathway which will cover topics such as statistical analysis and modelling, and computer programming. At the end of Year Zero all students who pass the Computer Science, Electronic Engineering and Mathematics Pathway will have a choice of which course to progress with. As well as BSc Mathematics, students on the Computer Science, Electronic Engineering and Mathematics Pathway could also study BSc Computer Science, BSc Computer Games or BEng Electronic Engineering.
Mathematics provides the logical foundations on which all of science, engineering and technology are built. From Year One of BSc Mathematics you will have the chance to study both fundamental topics and their modern applications, including:
Pure mathematics, including geometry, algebra, analysis and number theory
Applied topics such as mathematical physics, cryptography, mathematical modelling, differential equations and dynamical systems
Statistical, financial and analytical methods such as optimisation and the study of risk
As well as these mathematical topics, your degree will develop your programming skills in languages such as Python and SQL, and you will learn to solve sophisticated problems using computational toolkits such as Matlab, Maple and R.
Our School recognises the stand-alone and interdisciplinary aspects of mathematics, and your degree provides an exceptional range of in-demand transferrable skills for mathematically oriented careers, from business, to finance and commerce, industry, research, government, education and beyond. All our mathematical sciences degrees feature an employability component in every year, explicitly training sought-after skills and incorporating careers day events and seminars from speakers in industry.
Why we're great.
We equip you with the necessary knowledge and skills to succeed at Essex and beyond.
We’re ranked 25th in UK for mathematics (The Guardian University Guide 2025).
Small class sizes allow you to work closely with your teachers and classmates.
Our expert staff
Our Essex Pathways Department is a gateway to the University of Essex, helping students without standard entry requirements to grow in confidence, unlock their potential, and nurture their ambitions so they can progress in academic study.
As well as being world-class academics, our School of Mathematics, Statistics and Actuarial Science staff are award-winning teachers. Many of our academics have won national or regional awards for lecturing, and many of them are qualified and accredited teachers – something which is very rare at a university.
Our School is committed to providing you with the academic support you need to succeed. Our flexible policy means some staff are always available, whilst others maintain regular drop-in times. Staff are always happy to arrange appointments for longer discussions, and no issue is too big or too small.
Our innovative research groups are working on a broad range of collaborative areas tackling real-world issues. Here are a few examples:
Our data scientists carefully consider how not to lie, and how not to get lied to with data. Interpreting data correctly is especially important because much of our data science research is applied directly or indirectly to social policies, including health, care and education.
We do practical research with financial data (for example, assessing the risk of collapse of the UK's banking system) as well as theoretical research in financial instruments such as insurance policies or asset portfolios.
We also research how physical processes develop in time and space. Applications of this range from modelling epilepsy to modelling electronic cables.
Our optimisation experts work out how to do the same job with less resource, or how to do more with the same resource.
Our pure maths group are currently working on two new funded projects entitled ‘Machine learning for recognising tangled 3D objects' and ‘Searching for gems in the landscape of cyclically presented groups'.
We also do research into mathematical education and use exciting technologies such as electroencephalography or eye tracking to measure exactly what a learner is feeling. Our research aims to encourage the implementation of ‘the four Cs' of modern education, which are critical thinking, communication, collaboration, and creativity.
Specialist facilities
During Year Zero, you will have access to all of the facilities that the University of Essex has to offer, as well as those provided by our Essex Pathways Department to support you, such as:
We provide computer labs for internet research; classrooms with access to PowerPoint facilities for student presentations; AV facilities for teaching and access to web-based learning materials
Our new Student Services Hub will support you and provide information for all your needs as a student
Our social space is stocked with magazines and newspaper, and provides an informal setting to meet your lecturers, tutors and friends
Our School of Mathematics, Statistics and Actuarial Science also offers excellent on-campus facilities:
We have a Maths Support Centre, which offers help to students on a range of mathematical problems. Throughout term-time, we can chat through mathematical problems either on a one-to-one or small group basis
We have a dedicated social and study space for maths students in the School, which is situated in the STEM Centre
We host regular events and seminars throughout the year
Our students run a lively Mathematics Society, an active and social group where you can explore your interest in your subject with other students
Your future
Clear thinkers are required in every profession, so the successful mathematician has an extensive choice of potential careers.
Mathematics students are in demand from a wide range of employers in a host of occupations, including financial analysis, management, public administration and accountancy. The Council for Mathematical Sciences offers further information on careers in mathematics.
Our recent graduates have gone on to work for a wide range of high-profile companies including:
KPMG
British Arab Commercial Bank
Johal and Company
We also work with our University's Student Development Team to help you find out about further work experience, internships, placements, and voluntary opportunities.
“I’m happy to say that I am working in a field that I genuinely enjoy. As a software developer for HM Land Registry my responsibilities change depending on the team I am working with. So far I’ve had experience in software development, software testing, data analysis and project architecture. Problem solving is the number one skill from my degree that I need to use every day. In fact, most maths graduates have really good problem-solving and critical-thinking skills which helps us become proficient in the software development field.”
Vilius Gudziunas, BSc Mathematics, 2018
Entry requirements
UK entry requirements
UK and EU applicants:
All applications for degree courses with a foundation year (Year Zero) will be considered individually, whether you
think you might not have the grades to enter the first year of a degree course;
have non-traditional qualifications or experience (e.g. you haven’t studied A-levels or a BTEC);
are returning to university after some time away from education; or
are looking for more support during the transition into university study.
Standard offer:
Our standard offer is 72 UCAS tariff points from at least two full A-levels, or equivalent.
Examples of the above tariff may include:
A-levels: DDD
BTEC Level 3 Extended Diploma: MMP
T-levels: Pass with E in core
For this course all applicants must also hold GCSE Maths and Science at grade C/4 or above (or equivalent). We may be able to consider a pass in OFQUAL regulated Level 2 Functional Skills Maths where you cannot meet the requirements for Maths at GCSE level. However, you are advised to try to retake GCSE Mathematics if possible as this will better prepare you for university study and future employment.
If you are unsure whether you meet the entry criteria, please get in touch for advice.
Mature applicants and non-traditional academic backgrounds:
We welcome applications from mature students (over 21) and students with non-traditional academic backgrounds (might not have gone on from school to take level 3 qualifications). We will consider your educational and employment history, along with your personal statement and reference, to gain a rounded view of your suitability for the course.
You will still need to meet our GCSE requirements.
International applicants:
Essex Pathways Department is unable to accept applications from international students. Foundation pathways for international students are available at the University of Essex International College and are delivered and awarded by Kaplan, in partnership with the University of Essex. Successful completion will enable you to progress to the relevant degree course at the University of Essex.
International & EU entry requirements
We accept a wide range of qualifications from applicants studying in the EU and other countries. Get in touch with any questions you may have about the qualifications we accept. Remember to tell us about the qualifications you have already completed or are currently taking.
Sorry, the entry requirements for the country that you have selected are not available here. Please contact our Undergraduate Admissions team at ugquery@essex.ac.uk to request the entry requirements for this country.
English language requirements
English language requirements for applicants whose first language is not English: IELTS 5.5 overall with a minimum of 5.5 in each component, or specified score in another equivalent test that we accept.
Details of English language requirements, including component scores, and the tests we accept for applicants who require a Student visa (excluding Nationals of Majority English Speaking Countries) can be found here
If we accept the English component of an international qualification it will be included in the academic levels listed above for the relevant countries.
English language shelf-life
Most English language qualifications have a validity period of 5 years. The validity period of Pearson Test of English, TOEFL and CBSE or CISCE English is 2 years.
If you require a Student visa to study in the UK please see our immigration webpages for the latest Home Office guidance on English language qualifications.
Pre-sessional English courses
If you do not meet our IELTS requirements then you may be able to complete a pre-sessional English pathway that enables you to start your course without retaking IELTS.
Pending English language qualifications
You don’t need to achieve the required level before making your application, but it will be one of the conditions of your offer.
If you cannot find the qualification that you have achieved or are pending, then please email ugquery@essex.ac.uk.
Additional Notes
If you’re an international student, but do not meet the English language or academic requirements for direct admission to this degree, you could prepare and gain entry through a pathway course. Find out more about opportunities available to you at the University of Essex International College
Structure
Course structure
Our research-led teaching is continually evolving to address the latest challenges and breakthroughs in the field. The following modules are based on the current course structure and may change in response to new curriculum developments and innovation.
We understand that deciding where and what to study is a very important decision for you. We'll make all reasonable efforts to provide you with the courses, services and facilities as described on our website and in line with your contract with us. However, if we need to make material changes, for example due to significant disruption, we'll let our applicants and students know as soon as possible.
Components and modules explained
Components
Components are the blocks of study that make up your course. A component may have a set module which you must study, or a number of modules from which you can choose.
Each component has a status and carries a certain number of credits towards your qualification.
Status
What this means
Core
You must take the set module for this component and you must pass. No failure can be permitted.
Core with Options
You can choose which module to study from the available options for this component but you must pass. No failure can be permitted.
Compulsory
You must take the set module for this component. There may be limited opportunities to continue on the course/be eligible for the qualification if you fail.
Compulsory with Options
You can choose which module to study from the available options for this component. There may be limited opportunities to continue on the course/be eligible for the qualification if you fail.
Optional
You can choose which module to study from the available options for this component. There may be limited opportunities to continue on the course/be eligible for the qualification if you fail.
The modules that are available for you to choose for each component will depend on several factors, including which modules you have chosen for other components, which modules you have completed in previous years of your course, and which term the module is taught in.
Modules
Modules are the individual units of study for your course. Each module has its own set of learning outcomes and assessment criteria and also carries a certain number of credits.
In most cases you will study one module per component, but in some cases you may need to study more than one module. For example, a 30-credit component may comprise of either one 30-credit module, or two 15-credit modules, depending on the options available.
Modules may be taught at different times of the year and by a different department or school to the one your course is primarily based in. You can find this information from the module code. For example, the module code HR100-4-FY means:
HR
100
4
FY
The department or school the module will be taught by.
In this example, the module would be taught by the Department of History.
How do you test and evaluate the operation of simple computer programs? Or develop a program using tools in the Python programming language? Study the principles of procedural computing programming. Examine basic programming concepts, structures and methodologies. Understand good program design, learn to correct coding and practice debugging techniques.
This blended-learning module is designed to support students in their academic subject disciplines and to strengthen their confidence in key skills areas such as: academic writing, research, academic integrity, collaborative and reflective practices.
The students are supported through the use of subject-specific materials tailored to their chosen degrees with alignment of assessments between academic subject modules and the skills module.
Develop your problem solving skills in this module, as you are introduced to Statistical and Mathematical concepts with a particular focus on mechanics. You become familiar with R software, one of the most widely used statistical analysis software in the world, and learn how to use it to analyse and interpret data. You study simple concepts and techniques like data description and distribution; before moving on to more complex topics and theories including Newton’s laws of motion and the concepts of Mechanical energy. While also covering everything from probability rules and hypothesis testing to advanced algebra – you will be well equipped to present your solutions and findings to an audience with no specialist knowledge of Statistics and Mechanics.
This module will allow you to build your knowledge of differentiation and integration, how you can solve first and second order differential equations, Taylor Series and more.
Matrices and complex numbers are two fundamental concepts which arise throughout mathematics. In this module you will be introduced to these objects and learn fundamental techniques for working with them in a variety of contexts.
In this module you will learn the fundamentals of probability and statistics, including axioms and combinatorial analysis, distributions, and independence conditions. You will learn how to apply the addition rule of probability and construct diagrams to visually represent data sets. The course also covers the use of descriptive statistics to analyse data and provides hands-on experience with the R software package.
This module provides an in-depth introduction to ideas from Newtonian mechanics and dynamics which have played a crucial role in the evolution of mathematics. You will apply these ideas in various physical contexts, and develop your skills and understanding through the use of relevant software packages.
This module introduces programming skills and their applications in a range of mathematical contexts. Mathematical modelling skills will be an important focus, along with structuring and implementing code in MATLAB and R. To help you consolidate these skills, a key part of the module will be investigative computational modelling studies.
Introduction to Geometry, Algebra, and Number theory
(15 CREDITS)
Want to develop your mathematical skills by solving a variety of problems? Keen to write elegant and fluent mathematical arguments? In this module you will encounter a range of problem-solving techniques for situations across mathematics, including calculus, algebra, combinatorics, geometry and mechanics.
This module will provide you with a foundation of knowledge on the mathematics of sets and relations. You will develop an appreciation of mathematical proof techniques, including proof by induction.
What skills do you need to succeed during your studies? What about after university? How will you harness your knowledge and soft skills to realise your career goals? This module helps you take an active role in developing transferrable skills and capitalising on your unique background. As well as broad reflection on your professional development, this module will help you explore different career directions and prepare you for the application process, supported by an advisor from within the department.
This module continues your journey into probability and statistics. Topics include distribution theory, estimation and Maximum Likelihood estimators, hypothesis testing, basic linear regression and multiple linear regression. You will continue to develop your skills with implementations in R.
How do we rigorously discuss notions of infinity and the infinitely small? When do limits and derivatives of functions make sense? This module introduces the mathematics underlying modern calculus. Fundamental theorems are proved about sets, sequences and series of real numbers, and about continuous and differentiable functions of a single real variable.
In this module, you will learn how to extend techniques from calculus to vector-valued systems, through classical concepts such as gradient, divergence and curl. You will learn central theorems about these operators, and examine various applications and examples.
Linear systems are some of the most widely-applied concepts in modern algebra. Beginning with the abstract axiomatic definitions of vectors, vector spaces and linear maps, this module allows you to derive powerful methods for understanding many different systems in mathematics and science.
The module introduces you to the key abstract algebraic objects of groups, rings and fields and develops their fundamental theory. The theory will be illustrated and made concrete through numerous examples in settings that you will already have encountered.
Ordinary differential equations are the backbone of much applied mathematics, arising everywhere that a physical, financial or other system changes continuously. This module introduces techniques for studying classes of linear and nonlinear differential equations, and for interpreting their solutions.
What skills do you need to succeed during your studies? What about after university? How will you harness your knowledge and soft skills to realise your career goals? This module helps you take an active role in developing transferrable skills and capitalising on your unique background. As well as broad reflection on your professional development, this module will help you explore different career directions and prepare you for the application process, supported by an advisor from within the department.
This module extends analytical and algebraic techniques to functions of complex variables, and their applications. You will develop powerful tools for studying functions via their zeroes and poles, including the powerful Residue Theorem for calculating real integrals.
What skills do you need to succeed during your studies? What about after university? How will you harness your knowledge and soft skills to realise your career goals? This module helps you take an active role in developing transferrable skills and capitalising on your unique background. As well as broad reflection on your professional development, this module will help you explore different career directions and prepare you for the application process, supported by an advisor from within the department.
Undergraduate students in the School of Mathematics, Statistics and Actuarial Science typically attend three taught hours per module per week, for example, this could be two hours of lectures and one class/lab every week, but this will vary dependent upon the module.
Assessment
Your assessed coursework will generally consist of essays, reports, in-class tests, individual or group oral presentations, and small scale research projects
Our events are a great way to find out more about studying at Essex. We run a number of Open Days throughout the year which enable you to discover what our campus has to offer.
You have the chance to:
tour our campus and accommodation
find out answers to your questions about our courses, student finance, graduate employability, student support and more
meet our students and staff
Check out our Visit Us pages to find out more information about booking onto one of our events. And if the dates aren’t suitable for you, feel free to book a campus tour here.
Our UK students, and some of our EU students, who are still at school or college, can apply through their school. Your school will be able to check and then submit your completed application to UCAS. Our other EU applicants or independent applicants in the UK can also apply online through UCAS Apply.
The UCAS code for our University of Essex is ESSEX E70. The individual campus codes for our Loughton and Southend Campuses are ‘L' and ‘S' respectively.
You can find further information on how to apply, including information on transferring from another university, applying if you are not currently at a school or college, and applying for readmission on our How to apply and entry requirements page.
Please note that this course is not open to international applicants.
Offer Holder Days
If you receive an undergraduate offer to study with us in October 2025 and live in the UK, you will receive an email invitation to book onto one of our Offer Holder Days. Our Colchester Campus Offer Holder Days run from February to May 2025 on various Wednesdays and Saturdays, and our Southend Campus events run in April and May. These events provide the opportunity to meet your department, tour our campus and accommodation, and chat to current students. To support your attendance, we are offering a travel bursary, allowing you to claim up to £150 as reimbursement for travel expenses. For further information about Offer Holder Days, including terms and conditions and eligibility criteria for our travel bursary, please visit our webpage.
If you are an overseas offer-holder, you will be invited to attend one of our virtual events. However, you are more than welcome to join us at one of our in-person Offer Holder Days if you are able to - we will let you know in your invite email how you can do this.
Visit Colchester Campus
Set within 200 acres of award-winning parkland - Wivenhoe Park and located two miles from the historic city centre of Colchester – England's oldest recorded development. Our Colchester Campus is also easily reached from London and Stansted Airport in under one hour.
If you live too far away to come to Essex (or have a busy lifestyle), no problem. Our 360 degree virtual tours allows you to explore our University from the comfort of your home. Check out our Colchester virtual tour and Southend virtual tour to see accommodation options, facilities and social spaces.
At Essex we pride ourselves on being a welcoming and inclusive student community. We offer a wide range of support to individuals and groups of student members who may have specific requirements, interests or responsibilities.
The University makes every effort to ensure that this information on its programme specification is accurate and up-to-date. Exceptionally it can be necessary to make changes, for example to courses, facilities or fees. Examples of such reasons might include, but are not limited to: strikes, other industrial action, staff illness, severe weather, fire, civil commotion, riot, invasion, terrorist attack or threat of terrorist attack (whether declared or not), natural disaster, restrictions imposed by government or public authorities, epidemic or pandemic disease, failure of public utilities or transport systems or the withdrawal/reduction of funding. Changes to courses may for example consist of variations to the content and method of delivery of programmes, courses and other services, to discontinue programmes, courses and other services and to merge or combine programmes or courses. The University will endeavour to keep such changes to a minimum, and will also keep students informed appropriately by updating our programme specifications. The University would inform and engage with you if your course was to be discontinued, and would provide you with options, where appropriate, in line with our Compensation and Refund Policy.
The full Procedures, Rules and Regulations of the University governing how it operates are set out in the Charter, Statutes and
Ordinances and in the University Regulations, Policy and Procedures.