Dr Georgios Papanastasiou
-
Email
g.papanastasiou@essex.ac.uk -
Location
Colchester Campus
Profile
Biography
Dr Giorgos Papanastasiou is currently a Senior Manager in AI at Pfizer and Lead PI at the Archimedes Unit of the Athena Research Centre. His research interests focus on Generative AI, Medical AI, Machine Learning in the areas of Computer Vision & Multi-modal learning, Causal Decisions and Mathematical Modelling. Prior to this, he was an Assistant Professor (UK Lecturer) in Artificial Intelligence and Engineering in Medicine, at the School of Computer Science and Electronic Engineering, of the University of Essex, UK, in which he now holds an Honorary Assistant Professor position. From 2015-2020, Dr Papanastasiou was a Faculty Research Fellow in Computational Imaging and Data Analysis, working in Multi-modal (MRI, PET-CT, PET-MRI, CT, Ultrasound) imaging and analysis techniques at the Edinburgh Imaging-Queen’s Medical Research Institute (QMRI) department, of the University of Edinburgh. During this career step, Dr Papanastasiou was also Assistant Manager of the Image (and Data) Analysis lab, in the Edinburgh Imaging-QMRI department. Dr Papanastasiou is also a PI of the OPTIMA IMI project (https://www.imi.europa.eu/projects-results/project-factsheets/optima), was a Principal Investigator in the commercial research agreement with Athersys, Co-Investigator in the OPTIMAT project and the "Digital Platform of an AI-aided pipeline for drug development in targeted therapy of cancer" project. Dr Papanastasiou has contributed to >15 research studies, including four clinical research studies (MEMRI, Cardiac Care, EVOLVED, PREFFIR). To date, his total contribution to funding activities awarded is > 3,000,000 €.
Qualifications
-
PhD in Mathematical Modelling and Medical Physics University of Edinburgh, (2015)
-
MSc.R in Cardiovascular Biology (Bioengineering, Bioinformatics, Medical Physics) University of Edinburgh, (2011)
-
MSc in Biomedical Engineering National Technical University of Athens,and University of Patras, Greece; University Medical Centre of Groningen, The Netherlands, (2009)
-
M.Eng (5-year) in Materials Science and Engineering University of Ioannina, (2006)
Teaching and supervision
Publications
Journal articles (29)
Xu, W., Mesa-Eguiagaray, I., Morris, DM., Wang, C., Gray, CD., Sjöström, S., Papanastasiou, G., Badr, S., Paccou, J., Li, X., Timmers, PRHJ., Timofeeva, M., Farrington, SM., Dunlop, MG., Semple, SI., MacGillivray, T., Theodoratou, E. and Cawthorn, WP., (2025). Deep learning and genome-wide association meta-analyses of bone marrow adiposity in the UK Biobank. Nature Communications. 16 (1), 99-
Papanastasiou, G., Dikaios, N., Huang, J., Wang, C. and Yang, G., (2024). Is Attention all You Need in Medical Image Analysis? A Review. IEEE Journal of Biomedical and Health Informatics. 28 (3), 1398-1411
Morris, DM., Wang, C., Papanastasiou, G., Gray, CD., Xu, W., Sjöström, S., Badr, S., Paccou, J., Semple, SIK., MacGillivray, T. and Cawthorn, WP., (2024). A novel deep learning method for large-scale analysis of bone marrow adiposity using UK Biobank Dixon MRI data. Computational and Structural Biotechnology Journal. 24, 89-104
Voutouri, C., Englezos, D., Zamboglou, C., Strouthos, I., Papanastasiou, G. and Stylianopoulos, T., (2024). A convolutional attention model for predicting response to chemo-immunotherapy from ultrasound elastography in mouse tumor models. Communications Medicine. 4 (1), 203-
Papanastasiou, G., García Seco de Herrera, A., Wang, C., Zhang, H., Yang, G. and Wang, G., (2023). Focus on machine learning models in medical imaging. Physics in Medicine & Biology. 68 (1), 010301-010301
Singh, T., Joshi, S., Meah, MN., Spath, NB., Papanastasiou, G., Kershaw, LE., Baker, AH., Dweck, MR., Newby, DE. and Semple, SI., (2023). Repeatability and reproducibility of cardiac manganese-enhanced magnetic resonance imaging. Scientific Reports. 13 (1), 3366-
Xing, X., Papanastasiou, G., Walsh, S. and Yang, G., (2023). Less Is More: Unsupervised Mask-Guided Annotated CT Image Synthesis With Minimum Manual Segmentations. IEEE Transactions on Medical Imaging. 42 (9), 2566-2576
Wang, C., Zhang, H., Papanastasiou, G. and Yang, G., (2023). Editorial: Advances in machine learning methods facilitating collaborative image-based decision making for neuroscience. Frontiers in Computational Neuroscience. 17, 1267489-
Papanastasiou, G., Yang, G., Fotiadis, DI., Dikaios, N., Wang, C., Huda, A., Sobolevsky, L., Raasch, J., Perez, E., Sidhu, G. and Palumbo, D., (2023). Large-scale deep learning analysis to identify adult patients at risk for combined and common variable immunodeficiencies. Communications Medicine. 3 (1), 189-
Wang, C., Yang, G. and Papanastasiou, G., (2022). Unsupervised Image Registration towards Enhancing Performance and Explainability in Cardiac and Brain Image Analysis. Sensors. 22 (6), 2125-2125
Stavropoulou, AP., Theodosiou, M., Sakellis, E., Boukos, N., Papanastasiou, G., Wang, C., Tavares, A., Corral, CA., Gournis, D., Chalmpes, N., Gobbo, OL. and Efthimiadou, EK., (2022). Bimetallic gold-platinum nanoparticles as a drug delivery system coated with a new drug to target glioblastoma. Colloids and Surfaces B: Biointerfaces. 214, 112463-112463
Wang, C., Yang, G., Papanastasiou, G., Zhang, H., Rodrigues, JJPC. and de Albuquerque, VHC., (2021). Industrial Cyber-Physical Systems-based Cloud IoT Edge for Federated Heterogeneous Distillation.. IEEE Transactions on Industrial Informatics. 17 (8), 5511-5521
Spath, N., Singh, T., Papanastasiou, G., Kershaw, L., Baker, A., Janisczek, R., Gulsin, G., Dweck, M., McCann, G., Newby, D. and Semple, S., (2021). Manganese-enhanced Magnetic Resonance Imaging in Dilated Cardiomyopathy and Hypertrophic Cardiomyopathy.. European Heart Journal - Cardiovascular Imaging. 22 (12), 1463-1472
Papanastasiou, G., Mark, R., Chengjia, W., Kerstin, H., Christophe, L., Rustam, A-SS., Joanna M., W., Edwin J.R., VB. and Gerard, T., (2021). “Pharmacokinetic modelling for the simultaneous assessment of perfusion and ¹⁸F-flutemetamol uptake in cerebral amyloid angiopathy using a reduced PET-MR acquisition time: proof of concept.. NeuroImage. 225, 117482-117482
Wang, C., Yang, G., Papanastasiou, G., Tsaftaris, SA., Newby, DE., Gray, C., Macnaught, G. and MacGillivray, TJ., (2021). DiCyc: Deformation Invariant Cross-Domain Information Fusion for Medical Image Synthesis. Information Fusion. 67, 147-160
Chartsias, A., Papanastasiou, G., Wang, C., Semple, S., Newby, D., Dharmakumar, R. and Tsaftaris, S., (2021). Disentangle, align and fuse for multimodal and semi-supervised image segmentation.. IEEE Transactions on Medical Imaging. 40 (3), 781-792
Prokopiou, DE., Pissas, M., Fibbi, G., Margheri, F., Beata, K-S., Papanastasiou, G., Jansen, M., Wang, C., Laurenzana, A. and Efthimiadou, EK., (2021). Synthesis and characterization of modified magnetic nanoparticles as theranostic agents: in vitro safety assessment in healthy cells. Toxicology in Vitro. 72, 105094-105094
Spath, NB., Singh, T., Papanastasiou, G., Baker, A., Janiczek, RJ., McCann, GP., Dweck, MR., Kershaw, L., Newby, DE. and Semple, S., (2021). Assessment of stunned and viable myocardium using manganese-enhanced MRI. Open Heart. 8 (1), e001646-e001646
Wang, C., Dong, S., Zhao, X., Papanastasiou, G., Zhang, H. and Yang, G., (2020). SaliencyGAN: Deep Learning Semisupervised Salient Object Detection in the Fog of IoT. IEEE Transactions on Industrial Informatics. 16 (4), 2667-2676
Suchacki, KJ., Tavares, AAS., Mattiucci, D., Scheller, EL., Papanastasiou, G., Gray, C., Sinton, MC., Ramage, LE., McDougald, WA., Lovdel, A., Sulston, RJ., Thomas, BJ., Nicholson, BM., Drake, AJ., Alcaide-Corral, CJ., Said, D., Poloni, A., Cinti, S., Macpherson, GJ., Dweck, MR., Andrews, JPM., Williams, MC., Wallace, RJ., van Beek, EJR., MacDougald, OA., Morton, NM., Stimson, RH. and Cawthorn, WP., (2020). Bone marrow adipose tissue is a unique adipose subtype with distinct roles in glucose homeostasis. Nature Communications. 11 (1), 3097-
Kuhn, J., Papanastasiou, G., Tai, C-W., Moran, CM., Jansen, MA., Tavares, AAS., Lennen, RJ., Corral, CA., Wang, C., Thomson, AJW., Berry, CC. and Yiu, HHP., (2020). Tri-modal imaging of gold-dotted magnetic nanoparticles for magnetic resonance imaging, computed tomography and intravascular ultrasound: an in vitro study. Nanomedicine. 15 (25), 2433-2445
Chartsias, A., Joyce, T., Papanastasiou, G., Semple, S., Williams, M., Newby, DE., Dharmakumar, R. and Tsaftaris, SA., (2019). Disentangled representation learning in cardiac image analysis. Medical Image Analysis. 58, 101535-101535
Suchacki, KJ., Tavares, AAS., Mattiucci, D., Scheller, EL., Papanastasiou, G., Gray, C., Sinton, MC., Ramage, LE., McDougald, WA., Lovdel, A., Sulston, RJ., Thomas, BJ., Nicholson, BM., Drake, AJ., Alcaide-Corral, CJ., Said, D., Poloni, A., Cinti, S., MacPherson, GJ., Dweck, MR., Andrews, JPM., Williams, MC., Wallace, RJ., van Beek, EJR., MacDougald, OA., Morton, NM., Stimson, RH. and Cawthorn, WP., (2019). Bone marrow adipose tissue is a unique adipose subtype with distinct roles in systemic glucose homeostasis
Papanastasiou, G., Williams, MC., Dweck, MR., Mirsadraee, S., Weir, N., Fletcher, A., Lucatelli, C., Patel, D., van Beek, EJR., Newby, DE. and Semple, SIK., (2018). Multimodality Quantitative Assessments of Myocardial Perfusion Using Dynamic Contrast Enhanced Magnetic Resonance and 15O-Labeled Water Positron Emission Tomography Imaging. IEEE Transactions on Radiation and Plasma Medical Sciences. 2 (3), 259-271
Csincsik, L., MacGillivray, TJ., Flynn, E., Pellegrini, E., Papanastasiou, G., Barzegar-Befroei, N., Csutak, A., Bird, AC., Ritchie, CW., Peto, T. and Lengyel, I., (2018). Peripheral Retinal Imaging Biomarkers for Alzheimer’s Disease: A Pilot Study. Ophthalmic Research. 59 (4), 182-192
Hindel, S., Papanastasiou, G., Wust, P., Maaß, M., Söhner, A. and Lüdemann, L., (2018). Evaluation of pharmacokinetic models for perfusion imaging with dynamic contrast-enhanced magnetic resonance imaging in porcine skeletal muscle using low-molecular-weight contrast agents. Magnetic Resonance in Medicine. 79 (6), 3154-3162
Spath, NB., Lilburn, DML., Gray, GA., Le Page, LM., Papanastasiou, G., Lennen, RJ., Janiczek, RL., Dweck, MR., Newby, DE., Yang, PC., Jansen, MA. and Semple, SI., (2018). Manganese-Enhanced T₁ Mapping in the Myocardium of Normal and Infarcted Hearts. Contrast Media and Molecular Imaging. 2018, 1-13
Papanastasiou, G., Williams, MC., Dweck, MR., Alam, S., Cooper, A., Mirsadraee, S., Newby, DE. and Semple, SI., (2016). Quantitative assessment of myocardial blood flow in coronary artery disease by cardiovascular magnetic resonance: comparison of Fermi and distributed parameter modeling against invasive methods. Journal of Cardiovascular Magnetic Resonance. 18 (1), 57-57
Papanastasiou, G., Williams, MC., Kershaw, LE., Dweck, MR., Alam, S., Mirsadraee, S., Connell, M., Gray, C., MacGillivray, T., Newby, DE. and Semple, SIK., (2015). Measurement of myocardial blood flow by cardiovascular magnetic resonance perfusion: comparison of distributed parameter and Fermi models with single and dual bolus. Journal of Cardiovascular Magnetic Resonance. 17 (1), 17-17
Books (1)
El-Baz, A. and Suri, JS., (2018). Cardiovascular Imaging and Image Analysis. CRC Press. 0429806213. 9780429806216
Conferences (27)
Papanastasiou, G., Rodrigues, M., Wang, C., Heurling, K., Al-Shahi Salman, R. and Macnaught, G., Quantitative assessment of 18F-flutemetamol uptake in cerebral amyloid angiopathy using a reduced PET-MR acquisition time frame.
Papanastasiou, G., Rodrigues, M., Wang, C., Heurling, K., Al-Shahi Salman, R. and Macnaught, G., Pharmacokinetic analysis of 18F-flutemetamol uptake in cerebral amyloid angiopathy using PET-MR imaging.
Spath, N., Papanastasiou, G., Singh, T., Baker, A., Janiczek, R., McCann, G., Dweck, M., Newby, D. and Semple, S., Manganese-enhanced T1 mapping to quantify myocardial dysfunction in non-ischaemic cardiomyopathy.
Wang, C., MacGillivray, T., Macnaught, G., Papanastasiou, G. and Newby, D., Unsupervised cross-domain medical image synthesis by learning deformation-invariant mapping from unpaired data.
Papanastasiou, G., Williams, MC., Dweck, M., Mirsadraee, S., Fletcher, A., Lucatelli, C., Patel, D., van Beek, E., Newby, D. and Semple, S., A multimodality assessment of myocardial perfusion quantification using dynamic contrast enhanced magnetic resonance and 15O-labelled water positron emission tomography imaging.
Spath, N., Papanastasiou, G., Singh, T., Gulsin, G., McCann, G., Dweck, M., Baker, A., Newby, D. and Semple, S., Manganese-enhanced T1 mapping to quantify myocardial dysfunction in non-ischaemic cardiomyopathy.
Spath, N., Papanastasiou, G., Singh, T., Gulsin, G., McCann, G., Dweck, M., Baker, A., Newby, D. and Semple, S., Manganese-enhanced MRI in acute myocardial infarction.
Papanastasiou, G., Rodrigues, M., Salman, R. and Macnaught, G., Quantitative analysis of 18F-flutemetamol uptake in cerebral amyloid angiopathy using hybrid PET-MR imaging.
Spath, N., Papanastasiou, G., Singh, T., Baker, A., Janiczek, R., McCann, G., Dweck, M., Newby, D. and Semple, S., Manganese-Enhanced Magnetic Resonance Imaging to assess myocardial calcium handling to directly visualise myocardium viability.
Chartsias, A., Joyce, T., Papanastasiou, G., Semple, S., Williams, M., Dharmakumar, R., Newby, D. and Semple, S., Doing more with less: semi-supervised cardiac segmentation with a fraction of labeled images.
Hindel, S., Papanastasiou, G., Wust, P., Maaß, M., Söhner, A. and Lüdemann, L., Evaluation of Pharmacokinetic Models for Perfusion Imaging with Dynamic Contrast-Enhanced Magnetic Resonance Imaging in Porcine Skeletal Muscle Using Low-Molecular-Weight Contrast Agents.
Csincsik, L., Flynn, E., Pellegrini, E., Papanastasiou, G., MacGillivray, T., Ritchie, C., Peto, T. and Lengyel, I., Assessing retinal vascular biomarkers for Alzheimer’s disease using ultra-widefield imaging (UWFI).
Csincsik, L., Flynn, E., Pellegrini, E., Papanastasiou, G., MacGillivray, T., Ritchie, C., Peto, T. and Lengyel, I., Retinal vascular parameter assessment in Alzheimer’s disease using ultra-widefield imaging.
Wang, C., Yang, G. and Papanastasiou, G., (2021). FIRE: Unsupervised bi-directional inter- and intra-modality registration using deep networks
Jacutprakart, J., Andrade, FP., Cuan, R., Compean, AA., Papanastasiou, G. and Garcia Seco De Herrera, A., (2021). NLIP-Essex-ITESM at ImageCLEFcaption 2021 task: Deep learning-based information retrieval and multi-label classification towards improving medical image understanding
Jiang, H., Chartsias, A., Papanastasiou, G., Zhang, X., Dweck, M., Semple, S., Newby, D., Dharmakumar, R. and Tsaftaris, S., (2020). Semi-supervised Pathology Segmentation with Disentangled Representations.
Chartsias, A., Papanastasiou, G., Wang, C., Stirrat, C., Semple, S., Newby, D., Dharmakumar, R. and Tsaftaris, S., (2020). Multimodal cardiac segmentation using disentangled representation learning.
Jacutprakart, J., Savran Kiziltepe, R., Gan, J., Papanastasiou, G. and Garcia Seco De Herrera, A., (2020). Essex-NLIP at MediaEval Predicting MediaMemorability 2020 Task
Wang, C., Papanastasiou, G., Tsaftaris, SA., Yang, G., Gray, C., Newby, D., Macnaught, G. and MacGillivray, T., (2019). Improved Deformation Invariant Cross-domain Medical Image Synthesis.
Chartsias, A., Joyce, T., Papanastasiou, G., Semple, S., Newby, D., Williams, MC., Dharmakumar, R. and Sotirios, T., (2018). Factorised spatial representation learning: application in semi-supervised myocardial segmentation
Wang, C., Macnaught, G., Papanastasiou, G., MacGillivray, T. and Newby, D., (2018). Unsupervised Learning for Cross-Domain Medical Image Synthesis Using Deformation Invariant Cycle Consistency Networks
Papanastasiou, G., Gonzalez-Castro, V., Gray, C., Forsythe, R., Sourgia-Koutraki, Y., Mitchard, N., Newby, D. and Semple, S., (2017). Multidimensional assessments of abdominal aortic aneurysms by magnetic resonance against ultrasound diameter measurements.
Figueroa, J., Gray, C., Papanastasiou, G., Gonzalez-Castro, V., Polydorides, N., Andrew, E. and Vinnicombe, S., (2017). Towards the development of non-invasive measures of breast cancer risk: image analysis of digital breast tomosynthesis mammograms and tissue lobule content.
Papanastasiou, G., Williams, M., Dweck, M., Alam, S., Cooper, A., Mirsadraee, S., Newby, D. and Semple, S., (2016). Diagnostic performance of myocardial blood flow quantification in coronary artery disease by magnetic resonance.
Papanastasiou, G., Williams, MC., Alam, S., Dweck, M., Mirsadraee, S., Gray, C., Connell, M., MacGillivray, T., Newby, D. and Semple, S., (2014). Assessing the reliability of DP and Fermi estimates in single and dual bolus cardiac MR perfusion imaging.
Papanastasiou, G., Williams, M., Dweck, M., Mirsadraee, S., Weir, N., Alam, S., Stirrat, C., Newby, D. and Semple, S., (2014). Comparison of distributed parameter and Fermi modeling of cardiac MR perfusion with CT perfusion in coronary artery disease versus invasive coronary angiography.
Papanastasiou, G., Kershaw, L., Williams, M., Dweck, M., Alam, S., Mirsadraee, S., Gray, C., MacGillivray, T., Newby, D. and Semple, S., (2013). A multimodality cross-validation study of cardiac perfusion using MR and CT.
Thesis dissertation (1)
Papanastasiou, G., (2016). Quantification of cardiac magnetic resonance imaging perfusion in the clinical setting at 3T