People

Professor Reinhold Scherer

Head of Department - Professor (R)
School of Computer Science and Electronic Engineering (CSEE)
Professor Reinhold Scherer

Profile

Biography

Reinhold Scherer is Professor of Brain-Computer Interfaces (BCI) and Neural Engineering (NE) at the University of Essex and the current Head of the School of Computer Science and Electronic Engineering (CSEE). His academic journey includes a Dipl.-Ing. (MSc) degree obtained in 2001, a Dr.techn (PhD) in Computer Science awarded in 2008, and a Habilitation in Applied Computer Science conferred by Graz University of Technology (TU Graz), Austria, in 2016. His postdoctoral tenure from 2008 to 2010 was spent at the Paul G. Allen School for Computer Science & Engineering, University of Washington, Seattle, USA. Prof. Scherer’s career progressed at TU Graz, where he held the roles of Assistant Professor from 2010 to 2016 and Associate Professor from 2016 to 2018 at the Institute of Neural Engineering. Additionally, he served as the deputy director of the same institute from 2011 to 2018. His expertise also extended to the role of technical director at the Institute for Neurological Rehabilitation and Research at the Clinic Judendorf-Straßengel in Austria from 2005 to 2016. He has more than two decades of experience in the field of non-invasive BCI and neural interface technology, specializing in motor rehabilitation and assistive communication for individuals with motor impairments. As a proven leader, he has instrumentally enhanced the performance and user-friendliness of BCI systems and mobile neuroimaging technologies. Through extensive research and collaborative efforts, he has made significant contributions to the co-development of BCI technologies, ensuring that advancements in the field are both responsible and aligned with the needs of end-users. His interdisciplinary research is centred on brain-machine co-adaptation, data analytics, and predictive modelling based on artificial intelligence (AI). Utilizing systems engineering concepts in neuroscience, he advances neurotechnology that enhances and augments motor and cognitive skill development. Current applications focus on overcoming maths anxiety and improving motor rehabilitation after a stroke. He also develops predictive models for healthcare, optimises care pathways for people with Alzheimer's disease with comorbidities to promote independence and minimise care burden, and develops innovative communication tools for people with aphasia. He has published numerous scientific papers and holds patents. He is an associate editor of the journals Scientific Reports and Frontiers in Neuroprosthetics, and a board member of the International BCI Society.

Qualifications

  • Dipl.-Ing. Dr.techn (PhD) Graz University of Technology,

  • Diplom-Ingenieur Graz University of Technology,

Appointments

University of Essex

  • Professor, School of Computer Science and Electronic Engineering, University of Essex (1/1/2019 - present)

  • Head of School Computer Science and Electronic Engineering, University of Essex (1/4/2022 - present)

Other academic

  • Associate Professor, Neural Engineering, Graz University of Technology (1/9/2016 - 31/12/2018)

  • Assistant Professor, Graz University of Technology (1/11/2011 - 31/8/2016)

  • Postdoctoral research fellow, Department of Computer Science, University of Washington (1/5/2008 - 30/5/2010)

  • Research Associate, University of Graz (1/10/2007 - 30/4/2008)

Research and professional activities

Research interests

Brain-Computer Interfaces

Thought-based interaction with the physical world - Brain-Computer Interfaces (BCIs) translate brain signals directly into action. Motor activity is no longer required. Thoughts trigger actions. BCI research aims at providing physically disabled people communication tools that allow them to live an independent life and remain part of society. The primary goal of my research is to enhance usability and practicality of BCIs that detect changes in spontaneous noninvasive electroencephalogram (EEG) rhythms. Ultimate goal is the development of a reliable brain-switch signal that allows users 24/7 on-demand thought-based access to communication technologies. Using a BCI typically requires training. I am interested in optimizing human-machine interaction and in finding effective and efficient training paradigms. For both, human and machine.

Key words: Brain-Computer Interface
Open to supervise

Statistical and adaptive signal processing

Many applications, including brain-computer interfacing (BCI), require extracting relevant information from noisy signals and/or interpreting the uncertain information. I am interested in model based estimation methods for time-varying systems and in developing estimators/controllers where adaptive features are needed to handle uncertainties. Moreover, I am interested in transfer learning and findings stationary subspaces in multivariate data.

Key words: signal processing
Open to supervise

Mobile brain and body imaging

A more comprehensive knowledge of neuro-oscillatory mechanisms will lead to better understanding and interpretation of brain rhythms. To this end, it is essential to isolate specific behavior and study the related rhythms individually. It is, however, also important to study the brain behaving naturally in familiar environments. I am interested in studying the behaving brain in natural environment.

Open to supervise

Technology-mediated rehabilitation

Directed and early rehabilitation after brain injury (e.g. stroke) aims at promoting neuroplasticity, i.e., inducing (sub)cortical reorganization for minimizing motor impairment. Long term rehabilitation significantly improves motor function. Some unique contributions of robotic therapy versus conventional therapies are that robots can be used as valuable adjuncts to save time and energy for the therapist, making rehabilitation sessions more efficient, and that rehabilitation protocols can be very precisely tailored to individual patients with only as much assistance provided as needed. I am interested in studying the interplay between therapeutic intervention, brain activity pattern and functional outcome for improving motor rehabilitation.

Open to supervise

Assistive technology

| How can we help people with disabilities to perform tasks and activities of daily living independently? I am interested in developing novel human-machine interaction technology that support the disabled and allows regaining some degree of independence.

Open to supervise

Teaching and supervision

Previous supervision

Federica Armani
Federica Armani
Thesis title: Physiological Correlates of Math Anxiety for Neuroadaptive Learning Systems
Degree subject: Computer Science
Degree type: Doctor of Philosophy
Awarded date: 30/9/2024
Themis Nikolas Efthimiou
Themis Nikolas Efthimiou
Thesis title: A Spark of Emotion: The Impact of Electrical Facial Muscle Activation on Emotional State and Affective Processing
Degree subject: Psychology
Degree type: Doctor of Philosophy
Awarded date: 25/1/2024

Publications

Publications (2)

Baker, J., Efthimiou, TN., Scherer, R., Gartus, A., Elsenaar, A., Mehu, M. and Korb, S., (2023). Measurement of the N170 during facial neuromuscular electrical stimulation (fNMES)

Massetti, N., Granzotto, A., Bomba, M., Pizzi, SD., Mosca, A., Scherer, R., Onofrj, M. and Sensi, SL., (2020). A machine learning-based holistic approach for diagnoses within the Alzheimer’s disease spectrum

Journal articles (94)

Rogerson, M., Knight, D., Scherer, R., Jones, B., McManus, C., Waterworth, S., Murray, K. and Hope, E., (2024). Meta-analysis of the effects of VAR on goals scored and home advantage in football. Proceedings of the Institution of Mechanical Engineers Part P: Journal of Sports Engineering and Technology

Friedrich, EVC., Neuper, C. and Scherer, R., (2023). Editorial: Mind over brain, brain over mind: cognitive causes and consequences of controlling brain activity - volume II. Frontiers in Human Neuroscience. 17, 1280095-

Baker, J., Efthimiou, T., Scherer, R., Gartus, A., Elsenaar, A., Mehu, M. and Korb, S., (2023). Measurement of the N170 during facial neuromuscular electrical stimulation (fNMES).. Journal of Neuroscience Methods. 393, 109877-109877

Massetti, N., Russo, M., Franciotti, R., Nardini, D., Mandolini, G., Granzotto, A., Bomba, M., Delli Pizzi, S., Mosca, A., Scherer, R., Onofrj, M. and Sensi, SL., (2022). A Machine Learning-Based Holistic Approach to Predict the Clinical Course of Patients within the Alzheimer’s Disease Spectrum. Journal of Alzheimer's Disease. 85 (4), 1639-1655

(2022). Erratum to: A Machine Learning-Based Holistic Approach to Predict the Clinical Course of Patients within the Alzheimer’s Disease Spectrum. Journal of Alzheimer's Disease. 90 (2), 931-931

Cunha, JD., Perdikis, S., Halder, S. and Scherer, R., (2021). Post-adaptation effects in a motor imagery brain-computer interface online coadaptive paradigm. IEEE Access. 9, 41688-41703

Unterweger, J., Seeber, M., Zanos, S., Ojemann, JG. and Scherer, R., (2020). ECoG Beta Suppression and Modulation During Finger Extension and Flexion. Frontiers in Neuroscience. 14, 35-

Lan, Z., Liu, Y., Sourina, O., Wang, L., Scherer, R. and Müller-Putz, G., (2020). SAFE: An EEG dataset for stable affective feature selection. Advanced Engineering Informatics. 44, 101047-101047

Lan, Z., Sourina, O., Wang, L., Scherer, R. and Muller-Putz, GR., (2019). Domain Adaptation Techniques for EEG-Based Emotion Recognition: A Comparative Study on Two Public Datasets. IEEE Transactions on Cognitive and Developmental Systems. 11 (1), 85-94

Scherer, R., (2019). Thought-based interaction: Same data, same methods, different results?. PLoS Biology. 17 (4), e3000190-e3000190

Lotte, F., Jeunet, C., Chavarriaga, R., Bougrain, L., Thompson, DE., Scherer, R., Mowla, MR., Kübler, A., Grosse-Wentrup, M., Dijkstra, K. and Dayan, N., (2019). Turning negative into positives! Exploiting ‘negative’ results in Brain–Machine Interface (BMI) research. Brain-Computer Interfaces. 6 (4), 1-12

Chavarriaga, R., Fried-Oken, M., Kleih, S., Lotte, F. and Scherer, R., (2017). Heading for new shores! Overcoming pitfalls in BCI design. Brain-Computer Interfaces. 4 (1-2), 60-73

Huggins, JE., Guger, C., Ziat, M., Zander, TO., Taylor, D., Tangermann, M., Soria-Frisch, A., Simeral, J., Scherer, R., Rupp, R., Ruffini, G., Robinson, DKR., Ramsey, NF., Nijholt, A., Müller-Putz, G., McFarland, DJ., Mattia, D., Lance, BJ., Kindermans, P-J., Iturrate, I., Herff, C., Gupta, D., Do, AH., Collinger, JL., Chavarriaga, R., Chase, SM., Bleichner, MG., Batista, A., Anderson, CW. and Aarnoutse, EJ., (2017). Workshops of the Sixth International Brain–Computer Interface Meeting: brain–computer interfaces past, present, and future. Brain-Computer Interfaces. 4 (1-2), 3-36

Seeber, M., Scherer, R. and Müller-Putz, GR., (2016). EEG Oscillations Are Modulated in Different Behavior-Related Networks during Rhythmic Finger Movements. The Journal of Neuroscience. 36 (46), 11671-11681

Steyrl, D., Scherer, R., Faller, J. and Müller-Putz, GR., (2016). Random forests in non-invasive sensorimotor rhythm brain-computer interfaces: a practical and convenient non-linear classifier. Biomedical Engineering / Biomedizinische Technik. 61 (1), 77-86

Daly, I., Scherer, R., Billinger, M. and Müller-Putz, G., (2015). FORCe: Fully Online and Automated Artifact Removal for Brain-Computer Interfacing.. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 23 (5), 725-736

Seeber, M., Scherer, R., Wagner, J., Solis-Escalante, T. and Müller-Putz, GR., (2015). High and low gamma EEG oscillations in central sensorimotor areas are conversely modulated during the human gait cycle. NeuroImage. 112, 318-326

Scherer, R., Faller, J., Friedrich, EVC., Opisso, E., Costa, U., Kübler, A. and Müller-Putz, GR., (2015). Individually Adapted Imagery Improves Brain-Computer Interface Performance in End-Users with Disability. PLOS ONE. 10 (5), e0123727-e0123727

Pradhan, S., Scherer, R., Matsuoka, Y. and Kelly, VE., (2015). Grip Force Modulation Characteristics as a Marker for Clinical Disease Progression in Individuals With Parkinson Disease: Case-Control Study. Physical Therapy. 95 (3), 369-379

Scherer, R., Billinger, M., Wagner, J., Schwarz, A., Hettich, DT., Bolinger, E., Lloria Garcia, M., Navarro, J. and Müller-Putz, G., (2015). Thought-based row-column scanning communication board for individuals with cerebral palsy. Annals of Physical and Rehabilitation Medicine. 58 (1), 14-22

Seeber, M., Scherer, R., Wagner, J., Solis-Escalante, T. and Müller-Putz, GR., (2015). Corrigendum: EEG beta suppression and low gamma modulation are different elements of human upright walking. Frontiers in Human Neuroscience. 9, 542-

Daly, I., Faller, J., Scherer, R., Sweeney-Reed, CM., Nasuto, SJ., Billinger, M. and Müller-Putz, GR., (2014). Exploration of the neural correlates of cerebral palsy for sensorimotor BCI control.. Frontiers in Neuroengineering. 7 (JUL), 20-

Faller, J., Scherer, R., Friedrich, EVC., Costa, U., Opisso, E., Medina, J. and Müller-Putz, GR., (2014). Non motor tasks improve adaptive brain-computer interface performance in users with severe motor impairment. Frontiers in Neuroscience. 8 (OCT), 320-

Faller, J., Scherer, R., Costa, U., Opisso, E., Medina, J. and Müller-Putz, GR., (2014). A Co-Adaptive Brain-Computer Interface for End Users with Severe Motor Impairment. PLoS ONE. 9 (7), e101168-e101168

Seeber, M., Scherer, R., Wagner, J., Solis-Escalante, T. and Müller-Putz, GR., (2014). EEG beta suppression and low gamma modulation are different elements of human upright walking. Frontiers in Human Neuroscience. 8 (JULY), 485-

Wagner, J., Solis-Escalante, T., Scherer, R., Neuper, C. and Müller-Putz, G., (2014). It's how you get there: walking down a virtual alley activates premotor and parietal areas. Frontiers in Human Neuroscience. 8 (1 FEB), 93-

Friedrich, EVC., Wood, G., Scherer, R. and Neuper, C., (2014). Mind over brain, brain over mind: cognitive causes and consequences of controlling brain activity. Frontiers in Human Neuroscience. 8 (MAY), 348-

Daly, I., Billinger, M., Scherer, R. and Muller-Putz, G., (2013). On the Automated Removal of Artifacts Related to Head Movement From the EEG. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 21 (3), 427-434

Daly, I., Billinger, M., Laparra-Hernández, J., Aloise, F., García, ML., Faller, J., Scherer, R. and Müller-Putz, G., (2013). On the control of brain-computer interfaces by users with cerebral palsy.. Clinical Neurophysiology. 124 (9), 1787-1797

Scherer, R., Moitzi, G., Daly, I. and Muller-Putz, GR., (2013). On the Use of Games for Noninvasive EEG-Based Functional Brain Mapping. IEEE Transactions on Computational Intelligence and AI in Games. 5 (2), 155-163

Friedrich, EVC., Neuper, C. and Scherer, R., (2013). Whatever Works: A Systematic User-Centered Training Protocol to Optimize Brain-Computer Interfacing Individually. PLoS ONE. 8 (9), e76214-e76214

Scherer, R. and Pfurtscheller, G., (2013). Thought-based interaction with the physical world. Trends in Cognitive Sciences. 17 (10), 490-492

Friedrich, EVC., Scherer, R. and Neuper, C., (2013). Long-term evaluation of a 4-class imagery-based brain–computer interface. Clinical Neurophysiology. 124 (5), 916-927

Friedrich, EVC., Scherer, R. and Neuper, C., (2013). Stability of event-related (de-) synchronization during brain–computer interface-relevant mental tasks. Clinical Neurophysiology. 124 (1), 61-69

Stangl, M., Bauernfeind, G., Kurzmann, J., Scherer, R. and Neuper, C., (2013). A Haemodynamic Brain–Computer Interface Based on Real-Time Classification of near Infrared Spectroscopy Signals during Motor Imagery and Mental Arithmetic. Journal of Near Infrared Spectroscopy. 21 (3), 157-171

Scherer, R., Faller, J., Balderas, D., Friedrich, EVC., Pröll, M., Allison, B. and Müller-Putz, G., (2013). Brain–computer interfacing: more than the sum of its parts. Soft Computing. 17 (2), 317-331

Stangl, M., Bauernfeind, G., Kurzmann, J., Scherer, R. and Neuper, C., (2013). A haemodynamic brain-computer interface based on real-time classification of near infrared spectroscopy signals during motor imagery and mental arithmetic. JOURNAL OF NEAR INFRARED SPECTROSCOPY. 21 (3), 157-171

Scherer, R., Faller, J., Solis-Escalante, T., Wagner, J. and Müller-Putz, G., (2013). Brain-Computer Interface research at the Graz University of Technology: Novel concepts in neurorehabilitation. Annals of Physical and Rehabilitation Medicine. 56, e378-e378

Wagner, J., Solis-Escalante, T., Neuper, C., Scherer, R. and Müller-Putz, G., (2013). Robot Assisted Walking Affects the Synchrony Between Premotor and Somatosensory Areas. Biomedical Engineering / Biomedizinische Technik. 58, /j/bmte.2013.58.issue-s1-S/bmt-2013-4434/bmt-2013--

Faller, J., Solis-Escalante, T., Scherer, R. and Müller-Putz, GR., (2013). Automatic Adaptation to Post-Movement Eventrelated Synchronization in a Brain-Computer Interface. Biomedical Engineering / Biomedizinische Technik. 58, /j/bmte.2013.58.issue-s1-S/bmt-2013-4444/bmt-2013--

Scherer, R., Solis-Escalante, T., Faller, J., Wagner, J., Seeber, M. and Müller-Putz, G., (2013). On the use of Non-Invasive Brain-Computer Interface Technology in Neurorehabilitation. Biomedical Engineering / Biomedizinische Technik. 58, /j/bmte.2013.58.issue-s1-S/bmt-2013-4436/bmt-2013--

Billinger, M., Brunner, C., Scherer, R. and Müller-Putz, GR., (2013). Estimating Brain Connectivity from Single-Trial EEG Recordings. Biomedical Engineering / Biomedizinische Technik. 58, /j/bmte.2013.58.issue-s1-S/bmt-2013-4431/bmt-2013--

Seeber, M., Scherer, R., Wagner, J. and Müller-Putz, GR., (2013). Spatial-Spectral Identification Of Μ And Β Eeg Rhythm Sourcrs During Robot-Assisted Walking. Biomedical Engineering / Biomedizinische Technik. 58, /j/bmte.2013.58.issue-s1-S/bmt-2013-4433/bmt-2013--

Daly, I., Pichiorri, F., Faller, J., Kaiser, V., Kreilinger, A., Scherer, R. and Muller-Putz, G., (2012). What does clean EEG look like?. 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 2012, 3963-3966

Oesterlein, T., Scherer, R. and Müller-Putz, G., (2012). Monocular Head-Mounted SSVEP based Brain-Computer Interface to Retain Situational Awareness. Biomedical Engineering / Biomedizinische Technik. 57 (SI-1 Track-K), 931-931

Cheung, W., Sarma, D., Scherer, R. and Rao, RPN., (2012). Simultaneous brain-computer interfacing and motor control: Expanding the reach of non-invasive BCIs. 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 2012, 6715-6718

Faller, J., Torrellas, S., Miralles, F., Holzner, C., Kapeller, C., Guger, C., Bund, J., Muller-Putz, GR. and Scherer, R., (2012). Prototype of an auto-calibrating, context-aware, hybrid brain-computer interface. 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 2012, 1827-1830

Friedrich, EVC., Scherer, R. and Neuper, C., (2012). The effect of distinct mental strategies on classification performance for brain–computer interfaces. International Journal of Psychophysiology. 84 (1), 86-94

Wagner, J., Solis-Escalante, T., Grieshofer, P., Neuper, C., Müller-Putz, G. and Scherer, R., (2012). Level of participation in robotic-assisted treadmill walking modulates midline sensorimotor EEG rhythms in able-bodied subjects. NeuroImage. 63 (3), 1203-1211

Faller, J., Vidaurre, C., Solis-Escalante, T., Neuper, C. and Scherer, R., (2012). Autocalibration and Recurrent Adaptation: Towards a Plug and Play Online ERD-BCI. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 20 (3), 313-319

(2012). WCNR 2012 Oral Abstracts. Neurorehabilitation and Neural Repair. 26 (6), 654-694

Friedrich, EVC., Scherer, R., Sonnleitner, K. and Neuper, C., (2011). Impact of auditory distraction on user performance in a brain–computer interface driven by different mental tasks. Clinical Neurophysiology. 122 (10), 2003-2009

Bauernfeind, G., Scherer, R., Pfurtscheller, G. and Neuper, C., (2011). Single-trial classification of antagonistic oxyhemoglobin responses during mental arithmetic. Medical & Biological Engineering & Computing. 49 (9), 979-984

Pradhan, SD., Scherer, R., Matsuoka, Y. and Kelly, VE., (2011). Use of sensitive devices to assess the effect of medication on attentional demands of precision and power grips in individuals with Parkinson disease. Medical & Biological Engineering & Computing. 49 (10), 1195-1199

(2011). Handbook of Research on Personal Autonomy Technologies and Disability Informatics

Mueller-Putz, (2010). Temporal coding of brain patterns for direct limb control in humans. Frontiers in Neuroscience. 4 (JUN), 34-

Darvas, F., Scherer, R., Ojemann, JG., Rao, RP., Miller, KJ. and Sorensen, LB., (2010). High gamma mapping using EEG. NeuroImage. 49 (1), 930-938

Pfurtscheller, G., (2010). The hybrid BCI. Frontiers in Neuroscience. 4, 30-

Scherer, R., Zanos, SP., Miller, KJ., Rao, RPN. and Ojemann, JG., (2009). Classification of contralateral and ipsilateral finger movements for electrocorticographic brain-computer interfaces. Neurosurgical Focus. 27 (1), E12-E12

Scherer, R., Müller‐Putz, GR. and Pfurtscheller, G., (2009). Chapter 9 Flexibility and Practicality. International Review of Neurobiology. 86, 119-131

Neuper, C., Scherer, R., Wriessnegger, S. and Pfurtscheller, G., (2009). Motor imagery and action observation: Modulation of sensorimotor brain rhythms during mental control of a brain–computer interface. Clinical Neurophysiology. 120 (2), 239-247

Muller-Putz, GR., Scherer, R., Pfurtscheller, G., Neuper, C. and Rupp, R., (2009). Non-invasive control of neuroprostheses for the upper extremity: Temporal coding of brain patterns. 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 2009, 3353-3356

Scherer, R., Darvas, F., Ojemann, JG., Matsuoka, Y. and Rao, RPN., (2009). Brain-computer interface research at the university of washington:0020Eeg- and ecog-based paradigms. Journal of Cyber Therapy and Rehabilitation. 2 (4), 289-298

Pfurtscheller, G., Scherer, R., Müller‐Putz, GR. and Lopes da Silva, FH., (2008). Short‐lived brain state after cued motor imagery in naive subjects. European Journal of Neuroscience. 28 (7), 1419-1426

Scherer, R., Lee, F., Schlogl, A., Leeb, R., Bischof, H. and Pfurtscheller, G., (2008). Toward Self-Paced Brain–Computer Communication: Navigation Through Virtual Worlds. IEEE Transactions on Biomedical Engineering. 55 (2), 675-682

Pfurtscheller, G., Muller-Putz, GR., Scherer, R. and Neuper, C., (2008). Rehabilitation with Brain-Computer Interface Systems. Computer. 41 (10), 58-65

Leeb, R., Lee, F., Keinrath, C., Scherer, R., Bischof, H. and Pfurtscheller, G., (2008). Correction to "Brain - computer communication: Motivation, aim, and impact of exploring a virtual apartment". IEEE Transactions on Neural Systems and Rehabilitation Engineering. 16 (1), 119-119

Vidaurre, C., Scherer, R., Cabeza, R., Schlögl, A. and Pfurtscheller, G., (2007). Study of discriminant analysis applied to motor imagery bipolar data. Medical & Biological Engineering & Computing. 45 (1), 61-68

Leeb, R., Lee, F., Keinrath, C., Scherer, R., Bischof, H. and Pfurtscheller, G., (2007). Brain–Computer Communication: Motivation, Aim, and Impact of Exploring a Virtual Apartment. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 15 (4), 473-482

Vidaurre, C., Schlogl, A., Cabeza, R., Scherer, R. and Pfurtscheller, G., (2007). Study of On-Line Adaptive Discriminant Analysis for EEG-Based Brain Computer Interfaces. IEEE Transactions on Biomedical Engineering. 54 (3), 550-556

Scherer, R., Müller-Putz, GR. and Pfurtscheller, G., (2007). Self-initiation of EEG-based brain–computer communication using the heart rate response. Journal of Neural Engineering. 4 (4), L23-L29

Leeb, R., Friedman, D., Müller-Putz, GR., Scherer, R., Slater, M. and Pfurtscheller, G., (2007). Self-Paced (Asynchronous) BCI Control of a Wheelchair in Virtual Environments: A Case Study with a Tetraplegic. Computational Intelligence and Neuroscience. 2007, 1-8

Scherer, R., Schloegl, A., Lee, F., Bischof, H., Janša, J. and Pfurtscheller, G., (2007). The Self-Paced Graz Brain-Computer Interface: Methods and Applications. Computational Intelligence and Neuroscience. 2007, 1-9

Schlögl, A., Keinrath, C., Zimmermann, D., Scherer, R., Leeb, R. and Pfurtscheller, G., (2007). A fully automated correction method of EOG artifacts in EEG recordings. Clinical Neurophysiology. 118 (1), 98-104

Pfurtscheller, G., Scherer, R., Leeb, R., Keinrath, C., Neuper, C., Lee, F. and Bischof, H., (2007). Viewing Moving Objects in Virtual Reality Can Change the Dynamics of Sensorimotor EEG Rhythms. Presence: Teleoperators and Virtual Environments. 16 (1), 111-118

Leeb, R., Lee, F., Keinrath, C., Scherer, R., Bischof, H. and Pfurtscheller, G., (2007). Brain-computer communication: Motivation, aim, and impact of exploring a virtual apartment. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 15 (1), 473-482

Brunner, C., Scherer, R., Graimann, B., Supp, G. and Pfurtscheller, G., (2006). Online Control of a Brain-Computer Interface Using Phase Synchronization. IEEE Transactions on Biomedical Engineering. 53 (12), 2501-2506

Neuper, C., Müller-Putz, GR., Scherer, R. and Pfurtscheller, G., (2006). Motor imagery and EEG-based control of spelling devices and neuroprostheses. Progress in Brain Research. 159, 393-409

Muller-Putz, GR., Scherer, R., Neuper, C. and Pfurtscheller, G., (2006). Steady-state somatosensory evoked potentials: suitable brain signals for brain-computer interfaces?. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 14 (1), 30-37

Cincotti, F., Bianchi, L., Birch, G., Guger, C., Mellinger, J., Scherer, R., Schmidt, RN., Suarez, OY. and Schalk, G., (2006). BCI meeting 2005-workshop on technology: hardware and software. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 14 (2), 128-131

Müller-Putz, GR., Scherer, R., Pfurtscheller, G. and Rupp, R., (2006). Brain-computer interfaces for control of neuroprostheses: from synchronous to asynchronous mode of operation / Brain-Computer Interfaces zur Steuerung von Neuroprothesen: von der synchronen zur asynchronen Funktionsweise. Biomedizinische Technik/Biomedical Engineering. 51 (2), 57-63

Pfurtscheller, G., Muller-Putz, GR., Schlogl, A., Graimann, B., Scherer, R., Leeb, R., Brunner, C., Keinrath, C., Lee, F., Townsend, G., Vidaurre, C. and Neuper, C., (2006). 15 years of BCI research at graz university of technology: current projects. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 14 (2), 205-210

Vidaurre, C., Schloogl, A., Cabeza, R., Scherer, R. and Pfurtscheller, G., (2006). A Fully On-Line Adaptive BCI. IEEE Transactions on Biomedical Engineering. 53 (6), 1214-1219

Vidaurre, C., Schlogl, A., Cabeza, R., Scherer, R. and Pfurtscheller, G., (2006). Erratum to “A Fully On-Line Adaptive BCI”. IEEE Transactions on Biomedical Engineering. 53 (8), 1728-1728

Leeb, R., Scherer, R., Keinrath, C., Guger, C. and Pfurtscheller, G., (2005). Exploring Virtual Environments with an EEG-based BCI through Motor Imagery / Erkundung von virtuellen Welten durch Bewegungsvorstellungen mit Hilfe eines EEG-basierten BCI. Biomedizinische Technik/Biomedical Engineering. 50 (4), 86-91

Neuper, C., Scherer, R., Reiner, M. and Pfurtscheller, G., (2005). Imagery of motor actions: Differential effects of kinesthetic and visual–motor mode of imagery in single-trial EEG. Cognitive Brain Research. 25 (3), 668-677

Vidaurre, C., Schlögl, A., Cabeza, R., Scherer, R. and Pfurtscheller, G., (2005). Adaptive On-line Classification for EEG-based Brain Computer Interfaces with AAR parameters and band power estimates / Adaptive On-line Classification einer EEG-basierenden Gehirn-Computer Schnittstelle mit Adaptive Autoregressiven und Bandleistungsparametern. Biomedizinische Technik/Biomedical Engineering. 50 (11), 350-354

Müller-Putz, GR., Scherer, R., Brauneis, C. and Pfurtscheller, G., (2005). Steady-state visual evoked potential (SSVEP)-based communication: impact of harmonic frequency components. Journal of Neural Engineering. 2 (4), 123-130

Müller-Putz, GR., Scherer, R., Pfurtscheller, G. and Rupp, R., (2005). EEG-based neuroprosthesis control: A step towards clinical practice. Neuroscience Letters. 382 (1-2), 169-174

Scherer, R., Muller, GR., Neuper, C., Graimann, B. and Pfurtscheller, G., (2004). An Asynchronously Controlled EEG-Based Virtual Keyboard: Improvement of the Spelling Rate. IEEE Transactions on Biomedical Engineering. 51 (6), 979-984

Scherer, R., Graimann, B., Huggins, JE., Levine, SR. and Pfurtscheller, G., (2003). Frequency Component Selection for an ECoG-based Brain-Computer Interface. Auswahl von Frequenzkomponenten aus ECoG-Signalen zur Steuerung eines Brain Computer Interface. Biomedizinische Technik/Biomedical Engineering. 48 (1-2), 31-36

Pfurtscheller, G., Neuper, C., Muller, GR., Obermaier, B., Krausz, G., Schlogl, A., Scherer, R., Graimann, B., Keinrath, C., Skliris, D., Wortz, M., Supp, G. and Schrank, C., (2003). Graz-BCI: state of the art and clinical applications. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 11 (2), 1-4

Krausz, G., Scherer, R., Korisek, G. and Pfurtscheller, G., (2003). Critical decision-speed and information transfer in the "Graz Brain-Computer Interface". Applied Psychophysiology and Biofeedback. 28 (3), 233-240

Scherer, R., Müller, GR., Neuper, C., Graimann, B. and Pfurtscheller, G., (2003). ASYNCHRONOUS CONTROLLED EEG-BASED SPELLING DEVICE. Biomedical Engineering / Biomedizinische Technik. 48 (s1), 302-303

Books (1)

(2013). Human-Computer Interaction and Knowledge Discovery in Complex, Unstructured, Big Data. Springer Berlin Heidelberg. 9783642391453

Book chapters (12)

Scherer, R. and Vidaurre, C., (2018). Motor imagery based brain–computer interfaces. In: Smart Wheelchairs and Brain-Computer Interfaces. Elsevier. 171- 195. 9780128128923

Jeunet, C., Debener, S., Lotte, F., Mattout, J., Scherer, R. and Zich, C., (2018). Mind the Traps! Design Guidelines for Rigorous BCI Experiments. In: Brain–Computer Interfaces Handbook. CRC Press. 613- 634

Kober, SE., Ninaus, M., Friedrich, EVC. and Scherer, R., (2018). BCI and Games: Playful, Experience-Oriented Learning by Vivid Feedback?. In: Brain–Computer Interfaces Handbook. CRC Press. 209- 234

Scherer, R., Feitl, S., Schlesinger, M. and Wriessnegger, SC., (2017). Towards a General-Purpose Mobile Brain-Body Imaging NeuroIS Testbed. In: Lecture Notes in Information Systems and Organisation. Springer International Publishing. 133- 140. 9783319414010

Müller-Putz, GR., Solis-Escalante, T., Wagner, J., Faller, J., Kaiser, V., Ofner, P. and Scherer, R., (2013). Towards Restoration and Rehabilitation of Motor Functions with the Help of Brain-Computer Interfaces. In: Biosystems & Biorobotics. Springer Berlin Heidelberg. 1265- 1269. 9783642345456

Silva, H., Scherer, R., Sousa, J. and Londral, A., (2013). Towards Improving the Usability of Electromyographic Interfaces. In: Biosystems & Biorobotics. Springer Berlin Heidelberg. 437- 441. 9783642345456

Scherer, R. and Rao, R., (2011). Non-Manual Control Devices. In: Handbook of Research on Personal Autonomy Technologies and Disability Informatics. IGI Global. 233- 250

Rao, RPN. and Scherer, R., (2010). Statistical Pattern Recognition and Machine Learning in Brain–Computer Interfaces. In: Statistical Signal Processing for Neuroscience and Neurotechnology. Elsevier. 335- 367. 9780123750273

Scherer, R., Mueller-Putz, GR. and Pfurtscheller, G., (2009). FLEXIBILITY AND PRACTICALITY: GRAZ BRAIN-COMPUTER INTERFACE APPROACH. In: BRAIN MACHINE INTERFACES FOR SPACE APPLICATIONS: ENHANCING ASTRONAUT CAPABILITIES. 119- 131. 978-0-12-374821-8

Pfurtscheller, G., Brunner, C., Leeb, R., Scherer, R., Müller-Putz, GR. and Neuper, C., (2009). The Graz Brain-Computer Interface. In: The Frontiers Collection. Springer Berlin Heidelberg. 79- 96. 9783642020902

Müller-Putz, GR., Scherer, R., Pfurtscheller, G. and Rupp, R., (2009). Non Invasive BCIs for Neuroprostheses Control of the Paralysed Hand. In: The Frontiers Collection. Springer Berlin Heidelberg. 171- 184. 9783642020902

Pfurtscheller, G., Scherer, R. and Neuper, C., (2006). EEG-Based Brain-Computer Interface. In: Neuroergonomics. Oxford University Press. 315- 328. 9780195177619

Conferences (51)

Daly, I., Aloise, F., Arico, P., Belda, J., Billinger, M., Bolinger, E., Cincotti, F., Hettich, D., Iosa, M., Laparra-Hernandez, J., Scherer, R. and Mueller-Putz, G., Rapid prototyping for hBCI users with Cerebral palsy

Sultana, M., Jain, O., Halder, S., Matran-Fernandez, A., Nawaz, R., Scherer, R., Chavarriaga, R., Millan, JDR. and Perdikis, S., (2024). Evaluating dry EEG technology out of the lab

Armani, F., Daly, I., Vernitski, A., Gillmeister, H. and Scherer, R., (2023). Maths Anxiety and cognitive state monitoring for neuroadaptive learning systems using electroencephalography

Massetti, N., Granzotto, A., Bomba, M., Pizzi, SD., Mosca, A., Scherer, R., Onofrj, M. and Sensi, S., (2021). A machine learning-based holistic and age-dependent approach for the diagnosis within the Alzheimer's disease spectrum

Lopes-Dias, C., Si-Mohammed, H., Duarte, M., Argelaguet, F., Jeunet, C., Casiez, G., Müller-Putz, GR., Lécuyer, A. and Scherer, R., (2020). Detecting System Errors in Virtual Reality Using EEG Through Error-Related Potentials

Si-Mohammed, H., Lopes-Dias, C., Duarte, M., Argelaguet, F., Jeunet, C., Casiez, G., Muller-Putz, GR., Lecuyer, A. and Scherer, R., (2020). Detecting System Errors in Virtual Reality Using EEG Through Error-Related Potentials

Lan, Z., Sourina, O., Wang, L., Liu, Y., Scherer, R. and Muller-Putz, GR., (2018). Stable Feature Selection for EEG-based Emotion Recognition

Cunha, JD. and Scherer, R., (2018). Are Online Co-adaptive Sensorimotor Rhythm Brain-Computer Interface Training Paradigms Effective?

(2018). Cognitive Human-Machine Interaction Track Co-Chairs Message

Scherer, R., Faller, J., Sajda, P. and Vidaurre, C., (2018). EEG-based Endogenous Online Co-Adaptive Brain-Computer Interfaces: Strategy for Success?

Lan, Z., Sourina, O., Wang, L., Scherer, R. and Muller-Putz, G., (2017). Unsupervised Feature Learning for EEG-based Emotion Recognition

Zirui Lan, Muller-Putz, GR., Lipo Wang, Yisi Liu, Sourina, O. and Scherer, R., (2016). Using Support Vector Regression to estimate valence level from EEG

Scherer, R., Schwarz, A., Muller-Putz, GR., Pammer-Schindler, V. and Garcia, ML., (2016). Lets play Tic-Tac-Toe: A Brain-Computer Interface case study in cerebral palsy

Kobler, RJ. and Scherer, R., (2016). Restricted Boltzmann Machines in Sensory Motor Rhythm Brain-Computer Interfacing: A study on inter-subject transfer and co-adaptation

Hehenberger, L., Seeber, M. and Scherer, R., (2016). Estimation of gait parameters from EEG source oscillations

Scherer, R., Schwarz, A., Muller-Putz, GR., Pammer-Schindler, V. and Garcia, ML., (2015). Game-Based BCI Training: Interactive Design for Individuals with Cerebral Palsy

Pammer, V., Simon, J., Wilding, K., Keller, S. and Scherer, R., (2015). Designing for Engaging BCI Training

Scherer, R., Faller, J., Opisso, E., Costa, U., Steyrl, D. and Muller-Putz, GR., (2015). Bring mental activity into action! An enhanced online co-adaptive brain-computer interface training protocol

Schwarz, A., Scherer, R., Steyrl, D., Faller, J. and Muller-Putz, GR., (2015). A co-adaptive sensory motor rhythms Brain-Computer Interface based on common spatial patterns and Random Forest

Daly, I., Scherer, R. and Müller-Putz, G., (2013). A Population Search Algorithm for Clustered Multivariate Solutions: Application to EEG Connectivity

Daly, I., Billinger, M., Scherer, R. and Müller-Putz, G., (2013). Brain-Computer Interfacing for Users with Cerebral Palsy, Challenges and Opportunities

Faller, J., Solis-Escalante, T., Costa, U., Opisso, E., Medina, J., Scherer, R. and Muller-Putz, GR., (2013). Online co-adaptive brain-computer interfacing: Preliminary results in individuals with spinal cord injury

Faller, J., Solis-Escalante, T., Wriessnegger, S., Scherer, R. and Muller-Putz, GR., (2013). Automatic adaptation to the beta rebound after brisk movement imagery in a brain-computer interface

Helic, D., Strohmaier, M., Granitzer, M. and Scherer, R., (2013). Models of human navigation in information networks based on decentralized search

Steyrl, D., Scherer, R. and Müller-Putz, GR., (2013). Random Forests for Feature Selection in Non-invasive Brain-Computer Interfacing

Hettich, DT., Bolinger, EM., Scherer, R., Mueller-Putz, GR., Birbaumer, N., Rosenstiel, W., Bogdan, M. and Matuz, T., (2013). ELECTROPHYSIOLOGICAL MARKERS OF EMOTION PROCESSING IN CEREBRAL PALSY: TOWARDS A CLINICAL AFFECTIVE BRAIN-COMPUTER INTERFACE

Nachbagauer, G., Schosteritsch, P., Reiter, T., Scherer, R., Cik, M. and Fellendorf, M., (2012). Traffic analysis using cellular network data

Scherer, R., Wagner, J., Moitzi, G. and Muller-Putz, G., (2012). Kinect-based detection of self-paced hand movements: Enhancing functional brain mapping paradigms

(2012). Prototype of an auto-calibrating, context-aware, hybrid brain-computer interface.

Billinger, M., Brunner, C., Scherer, R., Holzinger, A. and Müller-Putz, GR., (2012). Towards a Framework Based on Single Trial Connectivity for Enhancing Knowledge Discovery in BCI

Holzinger, A., Scherer, R., Seeber, M., Wagner, J. and Müller-Putz, G., (2012). Computational Sensemaking on Examples of Knowledge Discovery from Neuroscience Data: Towards Enhancing Stroke Rehabilitation

Scherer, R., Proll, M., Allison, B. and Muller-Putz, GR., (2012). New input modalities for modern game design and virtual embodiment

Chung, M., Cheung, W., Scherer, R. and Rao, RPN., (2011). A hierarchical architecture for adaptive brain-computer interfacing

Bryan, M., Green, J., Chung, M., Chang, L., Scherer, R., Smith, J. and Rao, RPN., (2011). An adaptive brain-computer interface for humanoid robot control

Chung, M., Cheung, W., Scherer, R. and Rao, RPN., (2011). Towards hierarchical BCIs for robotic control

Scherer, R., Friedrich, ECV., Allison, B., Pröll, M., Chung, M., Cheung, W., Rao, RPN. and Neuper, C., (2011). Non-invasive Brain-Computer Interfaces: Enhanced Gaming and Robotic Control

Zander, TO., Klippel, MD. and Scherer, R., (2011). Towards multimodal error responses

Navarro, AA., Ceccaroni, L., Velickovski, F., Torrellas, S., Miralles, F., Allison, BZ., Scherer, R. and Faller, J., (2011). Context-Awareness as an Enhancement of Brain-Computer Interfaces

Holzinger, A., Scherer, R. and Ziefle, M., (2011). Navigational User Interface Elements on the Left Side: Intuition of Designers or Experimental Evidence?

Rao, R. and Scherer, R., (2010). Brain-Computer Interfacing [In the Spotlight

Scherer, R., Pradhan, S., Dellon, B., Kim, D., Klatzky, R. and Matsuoka, Y., (2009). Characterization of multi-finger twist motion toward robotic rehabilitation

Scherer, R., Pradhan, S., Dellon, B., Kim, D., Klatzky, R. and Matsuoka, Y., (2009). Characterization of multi-finger twist motion toward robotic rehabilitation

Schlögl, A., Vidaurre, C., Hofer, E., Wiener, T., Brunner, C., Scherer, R. and Chiarugi, F., (2008). BIOSIG - Standardization and quality control in biomedical signal processing using the BioSig project

Müller-Putz, GR., Scherer, R. and Pfurtscheller, G., (2007). Control of a two-axis artificial limb by means of a pulse width modulated brain switch

Leeb, R., Keinrath, C., Friedman, D., Guger, C., Scherer, R., Neuper, C., Garau, M., Antley, A., Steed, A., Slater, M. and Pfurtscheller, G., (2006). Walking by Thinking: The Brainwaves Are Crucial, Not the Muscles!

Grieshofer, P., Kollreider, A. and Scherer, R., (2006). The Lokomat as a possibility in the rehabilitation of patients with neurological disorders. Results after three years of clinical practice

Grieshofer, P., Scherer, R., Kollreider, A. and Scarpatetti, M., (2006). Robotic in hand rehabilitation - an innovation in hand therapy

Lahrmann, H., Neuper, C., Müller, GR., Scherer, R. and Pfurtscheller, G., (2005). Usefulness of an EEG-based brain-computer interface to establish communication in ALS

Grieshofer, P., Scherer, R. and Peichl, M., (2005). "Robotic in hand rehabilitation" Am innovation in hand therapy

Schlogl, A., Keinrath, C., Scherer, R. and Furtscheller, P., (2003). Information transfer of an EEG-based brain computer interface

Pfurtscheller, G., Neuper, C., Muller, GR., Obermaier, B., Krausz, G., Schlögl, A., Scherer, R., Graimann, B., Keinrath, C., Skliris, D., Wörtz, M., Supp, G. and Schrank, C., (2003). Graz-BCI:: State of the art and clinical applications

Grants and funding

2024

Harnessing portable smart-camera technology (p-SCT) to support the communication skills of people with aphasia

National Institute for Health Research

2023

Systems Engineering Innovation hubs for Multiple long-term Conditions (SEISMIC)

National Institute for Health Research

2021

Study of Functional Electrical Stimulation with assistive support driven by a Brain-Computer Interface on the upper limb rehabilitation of chronic stroke patients.

Ospedale di Vipiteno

Exploring the Decision-Making of Video Assistant Referees (VAR) in Football

Union of European Football Associations